TiO2/Ti Electrode Preparation, Characterization and its Photoelectrocatalytic Stability

2011 ◽  
Vol 393-395 ◽  
pp. 1579-1582
Author(s):  
Yun Lan Xu ◽  
Jin Ping Jia

TiO2/Ti electrode, photoelectrocatalysis (PEC), rotating disk reactor, dye. Abstract: In this work, TiO2/Ti electrode was prepared by sol-gel method and its character was investigated by field emission scanning electron microscope (FESEM), X-ray reflection diffraction (XRD) spectra, UV-Vis diffuse reflection absorption spectra and photoelectro-response analysis. FESEM and XRD analysis demonstrates the TiO2 particles were uniform, about 50 nm and almost anatase, UV-Vis diffuse reflection analysis demonstrates the absoption fringe of TiO2 was 400 nm, and photoelectro-response analysis demonstrates the photoelectro-response capability of the photocatalyst was evident and decreased with the dye solution concenstrate increased. The results of stability and reproducibility of TiO2/Ti electrode demonstrates repetition of both multi-runs of mono-electrode and mono-run of multi-electrodes was excellent, which indicates TiO2/Ti electrode prepared by sol-gel method can degrade dye wastewater high-effectively and stably.

2020 ◽  
Vol 16 (4) ◽  
pp. 450-452
Author(s):  
Nafisah Osman ◽  
Shazana Mohd Senari ◽  
Abdul Mutalib Md Jani

A high polarization resistance (Rp) at intermediate temperature (500–800°C) operation has become one of the major challenges in the development of proton-conducting fuel cells (PCFCs). Rp is the resistance of the cell that contributes by the electrodes parts which are anode and cathode as well as their interfacial components. The present study focused on the NiO-Ba(Ce0.6Zr0.4)0.9Y0.1O3-δ (NiO-BCZY) composite anode and its interfacial parts where the oxidation process takes place. The NiO-BCZY with a ratio of 50:50 was prepared by a sol-gel method and characterized by X-Ray Diffractometer (XRD), Field Emission Scanning Electron Microscopy/Energy Dispersive X-ray (FESEM/EDX), and Electrochemical Impedance Spectroscopy (EIS). At calcination temperature of 1100°C, NiO and BCZY oxides can preserve their phases to form composite anode as proven by XRD analysis. Morphology of the composite anode as observed by FESEM was spherical with particle size in the range of 30-70 nm. XRD analysis showed the formation of Ni-BCZY after undergoing reduction process under wet H2:N2 (10%:90%). As confirmed by the EIS data, the increased conductivity of the composite anode in wet H2:N2 (10%:90%) indicates that the NiO in the composite anode was reduced to Ni metal. The fabricated NiO-BCZY composite anode has shown a good potential to be a promising anode in PCFC application.


Open Physics ◽  
2005 ◽  
Vol 3 (3) ◽  
Author(s):  
Abdoljavad Novinrooz ◽  
Masoomeh Sharbatdaran ◽  
Hassan Noorkojouri

AbstractThin layers of tungsten trioxide have been prepared from an aqueous solution of peroxotungstic acid (PTA) using the sol-gel method. Compositional, structural and optical characteristics of WO3 coated on indium tin oxide (ITO) conductive glass substrates were studied using X-ray diffractometery (XRD), cyclic voltammetery (CV), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Monoclinic and triclinic crystalline structures for thin film and powdered WO3 were confirmed by XRD analysis. SEM micrograph of annealed samples revealed micro cracks due to a decrease in density and a contraction of layers. EDX analysis showed that 1∶2 ratio of oxygen and tungsten atoms in the prepared films is obtained at heat treatment temperatures higher than 200 °C. Furthermore, the annealed samples showed very good electrochromic behavior in cyclic voltammetery studies. Refractive index “n” and extinction coefficient “k” values were found to be reduced by increasing the wavelength and decreasing the temperature.


2021 ◽  
Vol 3 (7) ◽  
Author(s):  
Alexandre Pancotti ◽  
Dener Pereira Santos ◽  
Dielly Oliveira Morais ◽  
Mauro Vinícius de Barros Souza ◽  
Débora R. Lima ◽  
...  

AbstractIn this study, we report the synthesis and characterization of NiFe2O4 and CoFe2O4 nanoparticles (NPs) which are widely used in the biomedical area. There is still limited knowledge how the properties of these materials are influenced by different chemical routes. In this work, we investigated the effect of heat treatment over cytotoxicity of cobalt and niquel ferrites NPs synthesized by sol-gel method. Then the samples were studied using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM), Fourier Transform Infrared Spectroscopy Analysis (FTIR), and X-ray fluorescence (XRF). The average crystallite sizes of the particles were found to be in the range of 20–35 nm. The hemocompatibility (erythrocytes and leukocytes) was checked. Cytotoxicity results were similar to those of the control test sample, therefore suggesting hemocompatibility of the tested materials.


2013 ◽  
Vol 756 ◽  
pp. 91-98 ◽  
Author(s):  
Ftema W. Aldbea ◽  
Noor Bahyah Ibrahim ◽  
Mustafa Hj. Abdullah

Terbium –substituted yttrium iron garnet (Tb1.5Y1.5Fe5O12) films nanoparticles were successfully prepared by a sol-gel method. The films were deposited on the quartz substrate using spin coating technique. To study effect of annealing temperature, the annealing process was executed at 700, 800 and 900 °C in air for 2 hours. The X-ray diffraction (XRD) proved that the pure phase of garnet structure was detected for the film annealed at 900 °C. The lattice parameter increased with the increment of annealing temperature and the highest value of 12.35 Å was obtained at 900 °C. Field Emission Scanning Electron Microscope (FE-SEM) results showed that the particle size increased from 43nm to 56nm as annealing temperature increased from 700 to 900°C. The film’s thickness also affected by increasing of annealing temperature and become thin at 900 °C due to densification process occurred at high annealing temperature. The elemental compositions of the Tb1.5Y1.5Fe5O12 film were detected using an Energy Dispersive X-raySpectroscopy (EDX). Magnetic properties at room temperature were measured using a Vibrating Sample Magnetometer (VSM).The saturation magnetization Ms increased with the annealingtemperature and showed a high value of 104emu/cm3, but the coercivity Hc of the film was decreased due to the increment of the particle size. Normal 0 21 false false false MS X-NONE X-NONE MicrosoftInternetExplorer4 Terbium –substituted yttrium iron garnet (Tb1.5Y1.5Fe5O12) films nanoparticles were successfully prepared by a sol-gel method. The films were deposited on the quartz substrate using spin coating technique. To study effect of annealing temperature, the annealing process was executed at 700, 800 and 900°C in air for 2 hours. The X-ray diffraction (XRD) proved that the pure phase of garnet structure was detected for the film annealed at 900 °C. The lattice parameter increased with the increment of annealing temperature and the highest value of 12.35 Å was obtained at 900 °C. Field Emission Scanning Electron Microscope (FE-SEM) results showed that the particle size increased from 43nm to 56nm as annealing temperature increased from 700 to 900 °C. The film’s thickness also affected by increasing of annealing temperature and become thin at 900 °C due to densification process occurred at high annealing temperature. The elemental compositions of the Tb1.5Y1.5Fe5O12 film were detected using an Energy Dispersive X-ray Spectroscopy (EDX). Magnetic properties at room temperature were measured using a Vibrating Sample Magnetometer (VSM).The saturation magnetization Ms increased with the annealing temperature and showed a high value of 104emu/cm3, but the coercivity Hc of the film was decreased due to the increment of the particle size. st1\:*{behavior:url(#ieooui) } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}


2012 ◽  
Vol 545 ◽  
pp. 275-278 ◽  
Author(s):  
Lili Widarti Zainuddin ◽  
Norlida Kamarulzaman

A ceramics sample of LiTaO3 was prepared using a sol-gel method. The sample is annealed at 750 °C for 48 hours. X-ray diffraction analysis indicate the formation of single phase, rhombohedral structure. An ac impedance study was used to analyse the conductivity of LiTaO3 at room temperature and at various temperatures.


2011 ◽  
Vol 268-270 ◽  
pp. 356-359 ◽  
Author(s):  
Wen Song Lin ◽  
C. H. Wen ◽  
Liang He

Mn, Fe doped ZnO powders (Zn0.95-xMnxFe0.05O2, x≤0.05) were synthesized by an ameliorated sol-gel method, using Zn(CH3COO)2, Mn(CH3COO)2and FeCl2as the raw materials, with the addition of vitamin C as a kind of chemical reducer. The resulting powder was subsequently compacted under pressure of 10 MPa at the temperature of 873K in vacuum. The crystal structure and magnetic properties of Zn0.95-xMnxFe0.05O2powder and bulk samples have been investigated by X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). X-ray photoelectron spectroscopy (XPS) was used to study chemical valence of manganese, iron and zinc in the samples. The x-ray diffraction (XRD) results showed that Zn0.95-xMnxFe0.05O (x≤0.05) samples were single phase with the ZnO-like wurtzite structure. No secondary phase was found in the XRD spectrum. X-ray photoelectron spectroscopy (XPS) showed that Fe and Mn existed in Zn0.95-xMnxFe0.05O2samples in Fe2+and Mn2+states. The results of VSM experiment proved the room temperature ferromagnetic properties (RTFP) of Mn, Fe co-doped ZnO samples.


2001 ◽  
Vol 114-116 ◽  
pp. 307-311 ◽  
Author(s):  
José E. Gonçalves ◽  
Sandra C. Castro ◽  
Aline Y. Ramos ◽  
Maria C.M. Alves ◽  
Yoshitaka Gushikem

2021 ◽  
Author(s):  
Yanchun Zhang ◽  
Aimin Sun ◽  
Zhaxi Suonan

Abstract Different complexing agents were used to prepare Ni-Mg-Zn ferrite with the composition formula Ni0.2Mg0.2Zn0.6Fe2O4 via sol-gel method, which included citric acid, oxalic acid, egg white and EDTA. The Ni0.2Mg0.2Zn0.6Fe2O4 ferrite with no complexing agent was also prepared as a comparison. The chemical phases of samples were analyzed by the X-ray diffraction (XRD), which indicated that samples had spinel phase structure. The lattice constants of samples are in the range of 8.3980 ~ 8.4089 Å. The composition and structure were further studied by fourier transform infrared spectroscopy (FTIR). There were two typical characteristic bands related to the stretching vibrations of spinel ferrite in FTIR spectra. Scanning electron microscope (SEM) micrographs and transmission electron microscope (TEM) images showed that the particles have the shape of spherical cube. Energy dispersive spectrometer (EDS) analyzed the elements and ingredients of samples, which included Ni, Mg, Zn, Fe and O. X-ray photoelectron spectroscopy (XPS) is used to examine further the elemental composition and chemical state of sample prepared with EDTA as complexing agent. The optical properties of samples were investigated by photoluminescence spectra and UV-Vis spectroscopy. Vibrating sample magnetometer (VSM) was used to characterize magnetic properties, hysteresis loops revealed the ferrimagnetism behavior of prepared samples.


Nanopages ◽  
2019 ◽  
pp. 1-11
Author(s):  
G. M. Taha ◽  
M. N. Rashed ◽  
M. S. El-Sadek ◽  
M. A. Moghazy

Abstract BiFeO3 (BFO) nanopowder was synthesized in a pure form via a sol- gel method based on glycol gel reaction. Effect of drying and preheating temperature on preventing other phases was studied. Many parameters were studied as calcination temperature and time & stirring temperature as well. The prepared powder was characterized by X-Ray Diffraction of powder (XRD) and Transmission Electron Microscope (TEM). High pure BiFeO3 was obtained by preheated process at 400 °C for 0.5 h and calcination at 600 °C for 0.5 h without any impurities compared to dry at110 °C.


Sign in / Sign up

Export Citation Format

Share Document