scholarly journals Leaf Temperature Impacts Canopy Water Use Efficiency Independent of Changes in Leaf Level Water Use Efficiency

2021 ◽  
pp. 153357
Author(s):  
Thomas Sexton ◽  
Camille Steber ◽  
Asaph Cousins

2021 ◽  
Vol 12 ◽  
Author(s):  
Fei Li ◽  
Dagang Guo ◽  
Xiaodong Gao ◽  
Xining Zhao

Elevated atmospheric CO2 concentrations ([eCO2]) and soil water deficits significantly influence gas exchange in plant leaves, affecting the carbon-water cycle in terrestrial ecosystems. However, it remains unclear how the soil water deficit modulates the plant CO2 fertilization effect, especially for gas exchange and leaf-level water use efficiency (WUE). Here, we synthesized a comprehensive dataset including 554 observations from 54 individual studies and quantified the responses for leaf gas exchange induced by e[CO2] under water deficit. Moreover, we investigated the contribution of plant net photosynthesis rate (Pn) and transpiration rates (Tr) toward WUE in water deficit conditions and e[CO2] using graphical vector analysis (GVA). In summary, e[CO2] significantly increased Pn and WUE by 11.9 and 29.3% under well-watered conditions, respectively, whereas the interaction of water deficit and e[CO2] slightly decreased Pn by 8.3%. Plants grown under light in an open environment were stimulated to a greater degree compared with plants grown under a lamp in a closed environment. Meanwhile, water deficit reduced Pn by 40.5 and 37.8%, while increasing WUE by 24.5 and 21.5% under ambient CO2 concentration (a[CO2]) and e[CO2], respectively. The e[CO2]-induced stimulation of WUE was attributed to the common effect of Pn and Tr, whereas a water deficit induced increase in WUE was linked to the decrease in Tr. These results suggested that water deficit lowered the stimulation of e[CO2] induced in plants. Therefore, fumigation conditions that closely mimic field conditions and multi-factorial experiments such as water availability are needed to predict the response of plants to future climate change.



Agronomy ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 194 ◽  
Author(s):  
Sonja Blankenagel ◽  
Zhenyu Yang ◽  
Viktoriya Avramova ◽  
Chris-Carolin Schön ◽  
Erwin Grill

To improve sustainability of agriculture, high yielding crop varieties with improved water use efficiency (WUE) are needed. Despite the feasibility of assessing WUE using different measurement techniques, breeding for WUE and high yield is a major challenge. Factors influencing the trait under field conditions are complex, including different scenarios of water availability. Plants with C3 photosynthesis are able to moderately increase WUE by restricting transpiration, resulting in higher intrinsic WUE (iWUE) at the leaf level. However, reduced CO2 uptake negatively influences photosynthesis and possibly growth and yield as well. The negative correlation of growth and WUE could be partly disconnected in model plant species with implications for crops. In this paper, we discuss recent insights obtained for Arabidopsis thaliana (L.) and the potential to translate the findings to C3 and C4 crops. Our data on Zea mays (L.) lines subjected to progressive drought show that there is potential for improvements in WUE of the maize line B73 at the whole plant level (WUEplant). However, changes in iWUE of B73 and Arabidopsis reduced the assimilation rate relatively more in maize. The trade-off observed in the C4 crop possibly limits the effectiveness of approaches aimed at improving iWUE but not necessarily efforts to improve WUEplant.



2021 ◽  
Vol 308-309 ◽  
pp. 108581
Author(s):  
Fang Wang ◽  
Fen Zhang ◽  
Xiaohua Gou ◽  
Patrick Fonti ◽  
Jingqing Xia ◽  
...  


HortScience ◽  
2019 ◽  
Vol 54 (10) ◽  
pp. 1662-1666
Author(s):  
John Erwin ◽  
Tanveer Hussein ◽  
David J. Baumler

The instantaneous photosynthetic rate (Pn), transpiration rate (E), and stomatal conductance (gS) were measured for 33 outdoor-grown Capsicum varieties (varying in species of origin and indigenous habitat) between 29 July and 22 Aug. 2017 using a portable gas exchange meter. Cuvette leaf temperature (Tleaf) and relative humidity (RH) were recorded at that same time. Pn differed from 3.6 to 3.7 for ‘Malawi Piquante’ and ‘Korean Long Green’ peppers to 16.3 μmol CO2/m2/s (fixed) for ‘Thai Hot’ peppers. The gS differed from 0.01 to 0.05 among 13 varieties to 0.28 mmol H2O/m2/s for ‘Thai Hot’ peppers. E differed from 0.43 to 0.59 among three varieties to 4.14 to 4.20 mmol H2O/m2/s for ‘CGN 22091’ and ‘Peruvian Purple’ peppers. Water use efficiency (WUE; Pn/E) varied from 2.92 to 3.43 among three varieties to 5.10 to 7.20 for 16 other varieties. C. annuum derived varieties had higher Pn (9.4 μmol CO2/m2/s fixed) than varieties derived from other species (4.5–8.6 μmol CO2/m2/s fixed). Varieties originating from dry climates had higher Pn (12.5 μmol CO2/m2/s fixed) than those originating from temperate or tropical climates (8.0–8.8 μmol CO2/m2/s fixed). Tleaf (27 to 33 °C) and RH (38% to 39% and 57% to 59%) differed among varieties. Pn was positively correlated with gS, E, and RH and was negatively correlated with WUE. We found that Capsicum Pn, E, and gS varied more than has been previously reported, and our data suggested that Pn, gS, and E data of outdoor-grown peppers should be used only when selecting parents for a breeding program (unless progeny is intended for greenhouse production).



2020 ◽  
Author(s):  
Tammo Reichgelt ◽  
William J. D'Andrea ◽  
Ailín del C. Valdivia-McCarthy ◽  
Bethany R.S. Fox ◽  
Jennifer M. Bannister ◽  
...  


2003 ◽  
Vol 128 (1) ◽  
pp. 107-112 ◽  
Author(s):  
John L. Jifon ◽  
James P. Syvertsen

Effects of foliar sprays of a kaolin clay particle film (Surround WP) on leaf temperature (Tlf), net gas exchange, chlorophyll fluorescence and water relations of sun-exposed leaves on field-grown grapefruit trees (Citrus paradisi L.) were studied during Summer and Fall 2001. Trees were sprayed twice a week for 3 weeks with aqueous suspensions of kaolin (Surround) at 60 g·L-1. Physiological effects of kaolin application were most prominent around midday on warm sunny days than in mornings, evenings or cloudy days. Kaolin sprays increased leaf whiteness (62%), reduced midday leaf temperature (Tlf; ≈3 °C) and leaf to air vapor pressure differences (VPD; ≈20%) compared to water-sprayed control leaves. Midday reductions in Tlf and VPD were accompanied by increased stomatal conductance (gs) and net CO2 assimilation rates (ACO2) of kaolin sprayed leaves, suggesting that gs might have limited ACO2 in water-sprayed control leaves. Midday photoinhibition of photosynthesis was 30% lower in kaolin-sprayed leaves than in control leaves. Midday water use efficiency (WUE) of kaolin-sprayed leaves was 25% higher than that of control leaves. However, leaf transpiration and whole-tree water use were not affected by kaolin film sprays. Increased WUE was therefore, due to higher ACO2. Leaf intercellular CO2 partial pressures (Ci) were similar in control and kaolin-sprayed leaves indicating that stomatal conductance was not the major cause of reduced ACO2. These results demonstrate that kaolin sprays could potentially increase grapefruit leaf carbon uptake efficiency under high radiation and temperature stress.



Rice ◽  
2010 ◽  
Vol 3 (1) ◽  
pp. 72-86 ◽  
Author(s):  
Dominique This ◽  
Jonathan Comstock ◽  
Brigitte Courtois ◽  
Yunbi Xu ◽  
Nourollah Ahmadi ◽  
...  




2018 ◽  
Vol 248 ◽  
pp. 251-258 ◽  
Author(s):  
Gerhard Wieser ◽  
Walter Oberhuber ◽  
Barbara Waldboth ◽  
Andreas Gruber ◽  
Rainer Matyssek ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document