Characterization of proteins involved in early stage of wheat grain development by iTRAQ

2016 ◽  
Vol 136 ◽  
pp. 157-166 ◽  
Author(s):  
Mingming Yang ◽  
Jian Dong ◽  
Wanchun Zhao ◽  
Xiang Gao
2010 ◽  
Vol 100 (8) ◽  
pp. 763-773 ◽  
Author(s):  
Megumi Yoshida ◽  
Takashi Nakajima

The manner in which deoxynivalenol (DON) and nivalenol (NIV) accumulation progresses in wheat grain infected with Fusarium graminearum and the influence of the time of infection on the accumulation of toxins were investigated. Four cultivars were tested in a greenhouse environment, where the plants were spray inoculated at three different stages with a mixture of DON and NIV chemotypes of F. graminearum. The results indicate that high levels of DON and NIV can be produced beyond 20 days after anthesis (DAA), even by early infection. The results of field experiments performed on seven cultivars, where inoculation was conducted using colonized maize kernel inoculum, were consistent with the greenhouse results. In addition, in the greenhouse experiments, late infection, at least as late as 20 DAA, caused grain contamination with these toxins even without clear disease symptoms on the spike. These results indicate the importance of the late stage in grain development in DON and NIV contamination, suggesting that control strategies that cover the late as well as the early stage of grain development should be established to effectively reduce the risk of these toxins' contaminating wheat.


1996 ◽  
Vol 112 (3) ◽  
pp. 1211-1217 ◽  
Author(s):  
F. Dominguez ◽  
F. J. Cejudo

Author(s):  
Karol Calò ◽  
Giuseppe De Nisco ◽  
Diego Gallo ◽  
Claudio Chiastra ◽  
Ayla Hoogendoorn ◽  
...  

Atherosclerosis at the early stage in coronary arteries has been associated with low cycle-average wall shear stress magnitude. However, parallel to the identification of an established active role for low wall shear stress in the onset/progression of the atherosclerotic disease, a weak association between lesions localization and low/oscillatory wall shear stress has been observed. In the attempt to fully identify the wall shear stress phenotype triggering early atherosclerosis in coronary arteries, this exploratory study aims at enriching the characterization of wall shear stress emerging features combining correlation-based analysis and complex networks theory with computational hemodynamics. The final goal is the characterization of the spatiotemporal and topological heterogeneity of wall shear stress waveforms along the cardiac cycle. In detail, here time-histories of wall shear stress magnitude and wall shear stress projection along the main flow direction and orthogonal to it (a measure of wall shear stress multidirectionality) are analyzed in a representative dataset of 10 left anterior descending pig coronary artery computational hemodynamics models. Among the main findings, we report that the proposed analysis quantitatively demonstrates that the model-specific inlet flow-rate shapes wall shear stress time-histories. Moreover, it emerges that a combined effect of low wall shear stress magnitude and of the shape of the wall shear stress–based descriptors time-histories could trigger atherosclerosis at its earliest stage. The findings of this work suggest for new experiments to provide a clearer determination of the wall shear stress phenotype which is at the basis of the so-called arterial hemodynamic risk hypothesis in coronary arteries.


2011 ◽  
Vol 156 (1) ◽  
pp. 373-381 ◽  
Author(s):  
Eleazar Martínez-Barajas ◽  
Thierry Delatte ◽  
Henriette Schluepmann ◽  
Gerhardus J. de Jong ◽  
Govert W. Somsen ◽  
...  

2016 ◽  
Vol 35 (6) ◽  
pp. 3185-3197 ◽  
Author(s):  
CHUNLIANG SHANG ◽  
WENHUI ZHU ◽  
TIANYU LIU ◽  
WEI WANG ◽  
GUANGXIN HUANG ◽  
...  

2021 ◽  
pp. 147621
Author(s):  
Arturo Avendaño-Estrada ◽  
Camilo Rios ◽  
Iñigo Aguirre-Aranda ◽  
Miguel Ángel Ávila-Rodríguez ◽  
Joaquín Manjarrez-Marmolejo ◽  
...  

Rice ◽  
2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Penghui Li ◽  
Hui Li ◽  
Zhijian Liu ◽  
Yong Zhuang ◽  
Ming Wei ◽  
...  

Abstract Background Grain shape is a critical agronomic trait affecting grain yield and quality. Exploration and functional characterization of grain shape-related genes will facilitate rice breeding for higher quality and yield. Results Here, we characterized a recessive mutant named Oat-like rice for its unique grain shape which highly resembles oat grains. The Oat-like rice displayed abnormal floral organs, an open hull formed by remarkably elongated leafy lemmas and paleae, occasionally formed conjugated twin brown rice, an aberrant grain shape and a low seed setting rate. By map-based cloning, we discovered that Oat-like rice harbors a novel allele of OsMADS1 gene (OsMADS1Olr), which has a spontaneous point mutation that causes the substitution of an amino acid that is highly conserved in the MADS-box domain of the MADS-box family. Further linkage analysis indicated that the point mutation in the OsMADS1Olr is associated with Oat-like rice phenotype, and expression analysis of the OsMADS1 by qRT-PCR and GUS staining also indicated that it is highly expressed in flower organs as well as in the early stages of grain development. Furthermore, OsMADS1Olr-overexpressing plants showed similar phenotypes of Oat-like rice in grain shape, possibly due to the dominant negative effect. And OsMADS1-RNAi plants also displayed grain phenotypes like Oat-like rice. These results suggested that OsMADS1Olr is responsible for the Oat-like rice phenotype including aberrant grain shape. Moreover, the expression levels of representative genes related to grain shape regulation were apparently altered in Oat-like rice, OsMADS1Olr-overexpressing and OsMADS1-RNAi transgenic plants. Finally, compared with Oat-like rice, OsMADS1Olr-overexpressing and OsMADS1-RNAi plants, mild phenotype of seed-specific OsMADS1-RNAi transgenic plants indicated that OsMADS1 may has has a direct regulation role in grain development and the grain phenotypes of Oat-like rice, OsMADS1Olr-overexpressing and OsMADS1-RNAi plants are majorly caused by the abnormal lemma and palea development. Conclusions Altogether, our results showed that grain shape and a low seed setting rate of the notable ‘Oat-like rice’ are caused by a spontaneous point mutation in the novel allele OsMADS1Olr. Furthermore, our findings suggested that OsMADS1 mediates grain shape possibly by affecting the expression of representative genes related to grain shape regulation. Thus, this study not only revealed that OsMADS1 plays a vital role in regulating grain shape of rice but also highlighted the importance and value of OsMADS1 to improve the quality and yield of rice by molecular breeding.


2021 ◽  
Author(s):  
Ya‐Li Fang ◽  
Yao‐Yao Zhou ◽  
Xin Li ◽  
Yue Gao ◽  
De‐Long Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document