scholarly journals Predictive plots for conical pick performance using mechanical and elastoplastic properties of rocks

2020 ◽  
Vol 12 (5) ◽  
pp. 1027-1035 ◽  
Author(s):  
Serdar Yasar
2011 ◽  
Vol 26 (4) ◽  
pp. 393-397 ◽  
Author(s):  
Xiang ZHAO ◽  
Feng-Hui WANG ◽  
Xia WANG ◽  
Zhi-Qiang LIU

2009 ◽  
Vol 24 (3) ◽  
pp. 784-800 ◽  
Author(s):  
Ling Liu ◽  
Nagahisa Ogasawara ◽  
Norimasa Chiba ◽  
Xi Chen

Indentation is widely used to extract material elastoplastic properties from measured force-displacement curves. Many previous studies argued or implied that such a measurement is unique and the whole material stress-strain curve can be measured. Here we show that first, for a given indenter geometry, the indentation test cannot effectively probe material plastic behavior beyond a critical strain, and thus the solution of the reverse analysis of the indentation force-displacement curve is nonunique beyond such a critical strain. Secondly, even within the critical strain, pairs of mystical materials can exist that have essentially identical indentation responses (with differences below the resolution of published indentation techniques) even when the indenter angle is varied over a large range. Thus, fundamental elastoplastic behaviors, such as the yield stress and work hardening properties (functions), cannot be uniquely determined from the force-displacement curves of indentation analyses (including both plural sharp indentation and deep spherical indentation). Explicit algorithms of deriving the mystical materials are established, and we qualitatively correlate the sharp and spherical indentation analyses through the use of critical strain. The theoretical study in this paper addresses important questions of the application range, limitations, and uniqueness of the indentation test, as well as providing useful guidelines to properly use the indentation technique to measure material constitutive properties.


2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
Zhenguo Lu ◽  
Lirong Wan ◽  
Qingliang Zeng ◽  
Xin Zhang ◽  
Kuidong Gao

In order to overcome conical pick wear in the traditional rock cutting method, a new cutting method was proposed on account of increasing free surface of the rock. The mechanical model of rock plate bending under concentrated force was established, and the first fracture position was given. The comparison between experimental and numerical results indicated that the numerical method is effective. A computer code LS-DYNA (3D) was employed to study the cutting performance of a conical pick. To study the rock size influenced on the cutting performance, the numerical simulations with different thickness, width, and height of a rock plate was carried out. The numerical simulation with the different cutting parameters of cutting speed, cutting angle, and cutting position influenced on cutting performance was also carried out. The numerical results indicated that the peak force increased with the increasing thickness of rock plate. With the increasing width and height of the rock plate, the peak force decreased and then became stable. Besides, the peak force decreased with the increasing of cutting position lxp/lx. Moreover, the peak force increased and then decreased with the increasing of cutting angle. The cutting speed has nonsignificant influence on the peak force. The strong exponential relationship was obtained between the peak force and cutting position, thickness, height, and width of the rock plate at a confidence level of 0.95. A binomial relationship was observed between the peak force and cutting angel. The cutting force comparison between traditional rock cutting and rock plate cutting indicated that the new cutting method can effectively reduce peak cutting force.


Sign in / Sign up

Export Citation Format

Share Document