scholarly journals Burnout among the addiction counseling workforce: The differential roles of mindfulness and values-based processes and work-site factors

2011 ◽  
Vol 40 (4) ◽  
pp. 323-335 ◽  
Author(s):  
Roger Vilardaga ◽  
Jason B. Luoma ◽  
Steven C. Hayes ◽  
Jacqueline Pistorello ◽  
Michael E. Levin ◽  
...  
1970 ◽  
Vol 23 ◽  
Author(s):  
M. Van Miegroet

A  certain number of measurable characteristics of tree leaves (morphological  characteristics, absorption of light radiation, intensity of respiration and  photosynthesis) are clearly linked with the presence of physiologically  active pigments in the leaves.     Leaf characteristics are highly and inequally influenced by changing  conditions of light environment, especially those related to light intensity,  light quality and duration of the daily illumination period. These  modifications do not only apply to light radiation as created under  laboratory conditions, but also to light conditions ensuing from the place in  the crown of a single tree, the social position of the tree in a forest stand  and the site factors in general.     There are also changes taking place due to the progression of the  vegetation period, at the end of which all species are less tolerant or more  light demanding. The reaction of the leaves towards light radiation out of  different regions of the spectrum is also different. The so-called blue light  radiation (λmax = 440 nm) seems to be of the greatest importance in this  relation, as species react quite different to its action.     The biggest variation in leaf characteristics due to changing light  environment was measured for oak and beech, which both react quickly and are  qualified as 'photolabile species'. No important variations occur in leaves  of ash and maple, which therefore are qualified as 'photostable species'.      As a consequence of variable reactions to changing light conditions, the  relationships between the species are continually modified, even in such a  way that their potential for dominance is not constant.     The classical division into tolerant and intolerant species or  classification of the species based upon the degree of light demand, is  highly inaccurate and it seems preferable to speak of relative light demands  and relative tolerance. All these observations and conclusions bring about a  clear confirmation of the necessity to recognize the individuality of the  single tree, the special character of each growth condition, the own  structure of each forest stand, the specific reaction to one sided  modifications of environmental factors. This is especially important for an  intensive sylvicultural practice.     They also prove the necessity for more physiological and biochemical  research to arrive at a better understanding of growth and its mechanism.      Sylviculture in fact must try to regulate, on an expanded scale, the  phenomens of growth, which is the exchange, absorption and transformation of  energy.     A practical interpretation and regulation of fundamental laws of physiology  and growth will be possible as soon as a clinical form of sylviculture is  created and the adequate instrumentarium developed.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 209
Author(s):  
Luiza Tymińska-Czabańska ◽  
Jarosław Socha ◽  
Marek Maj ◽  
Dominika Cywicka ◽  
Xo Viet Hoang Duong

Site productivity provides critical information for forest management practices and is a fundamental measure in forestry. It is determined using site index (SI) models, which are developed using two primary groups of methods, namely, phytocentric (plant-based) or geocentric (earth-based). Geocentric methods allow for direct site growth modelling, in which the SI is predicted using multiple environmental indicators. However, changes in non-static site factors—particularly nitrogen deposition and rising CO2 concentration—lead to an increase in site productivity, which may be visible as an age trend in the SI. In this study, we developed a geocentric SI model for oak. For the development of the SI model, we used data from 150 sample plots, representing a wide range of local topographic and site conditions. A generalized additive model was used to model site productivity. We found that the oak SI depended predominantly on physicochemical soil properties—mainly nitrogen, carbon, sand, and clay content. Additionally, the oak SI value was found to be slightly shaped by the topography, especially by altitude above sea level, and topographic position. We also detected a significant relationship between the SI and the age of oak stands, indicating the long-term increasing site productivity for oak, most likely caused by nitrogen deposition and changes in climatic conditions. The developed geocentric site productivity model for oak explained 77.2% of the SI variation.


2021 ◽  
Vol 493 ◽  
pp. 119266
Author(s):  
Christel C. Kern ◽  
Laura S. Kenefic ◽  
Christian Kuehne ◽  
Aaron R. Weiskittel ◽  
Sarah J. Kaschmitter ◽  
...  

2020 ◽  
Vol 3 (1) ◽  
pp. 56
Author(s):  
Arkadiusz Gendek ◽  
Monika Aniszewska ◽  
Witold Zychowicz ◽  
Tadeusz Moskalik ◽  
Jan Malaťák ◽  
...  

The aim of the research was to verify the impact of selected parameters on the efficiency and organization of chipper operations. The paper analyzes chipping operations in Polish forests with a focus on work site location, overnight chipper location, chipper workload per site, fuel consumption, and work shift duration, as all of these factors may affect operating efficiency. The mean chipper travel distance between sites during a shift ranged from 4.74 km to 9.5 km (chippers moved on average every other day). The mean work shift duration was 12.4 h. At the end of a shift, the chippers traveled on average from 4.2 km to 6.3 km to an overnight location. At the beginning of a workday, the chippers were dispatched to sites at a distance of 2.5 km to 4.0 km. The average fuel consumption of the forwarder-mounted chippers was 16 L/h and that of the truck-mounted chipper was 7.7 L/h. It was found that the following actions have a decisive influence on the effectiveness of the operation of the chippers: determination of the size of individual tasks and the deployment of successive forest areas, indication of the proper location of the machine base, and the method of accessing the forest area.


Sign in / Sign up

Export Citation Format

Share Document