scholarly journals Oxygen isotopic composition of bulk carbonates in recent sediments from Lake Kuhai (NW China) and implications for hydroclimatic changes in headwater areas of the Yellow River on the northeastern Tibetan Plateau

2017 ◽  
Vol 134 ◽  
pp. 150-159 ◽  
Author(s):  
Xiangzhong Li ◽  
Xin Zhou ◽  
Weiguo Liu ◽  
Guoqing Fan ◽  
Peng Cheng ◽  
...  
Minerals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 603 ◽  
Author(s):  
Wang ◽  
Zhang ◽  
Garzanti ◽  
Nie ◽  
Peng ◽  
...  

Despite decades of study, the factors that controlled the formation and evolution of theupper reaches of the Yellow River, including uplift of the northeastern Tibetan Plateau, Pliocene-Pleistocene climate change, and autogenetic processes are still poorly constrained. The stratigraphicrecord of such paleogeographic evolution is recorded in the sequence of nine terraces formed duringprogressive incision of the Yellow River in the last 1.7 Ma. This article investigates in detail forsediment provenance in terraces of the Lanzhou area, based on heavy-mineral and geochemical(REE) signatures. Two main provenance changes are identified, pointing each to a majorpaleogeographic reorganization coupled with expansion of the upper Yellow River catchment andenhanced sediment fluxes. The first change took place between the deposition of terrace T9 (formedaround 1.7 Ma) and terrace T8 (formed around 1.5 Ma), when rapid fluvial incision point to tectoniccontrol and active uplift of northeastern Tibetan Plateau. The second change took place betweendeposition of terrace T4 (formed around 0.86 Ma) and terrace T3 (formed around 0.14 Ma), duringa period of low incision rates and notably enhanced sediment fluxes as a response to enhanced EastAsian Summer Monsoon and consequently increased precipitations, pointing instead chiefly toclimatic control.


1998 ◽  
Vol 29 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Peter Raben ◽  
Wilfred H. Theakstone

Marked vertical variations of ions and oxygen isotopes were present in the snowpack at the glacier Austre Okstindbreen during the pre-melting phase in 1995 at sites between 825 m and 1,470 m above sea level. As the first meltwater percolated from the top of the pack, ions were moved to a greater depth, but the isotopic composition remained relatively unchanged. Ions continued to move downwards through the pack during the melting phase, even when there was little surface melting and no addition of liquid precipitation. The at-a-depth correlation between ionic concentrations and isotopic ratios, strong in the pre-melting phase, weakened during melting. In August, concentrations of Na+ and Mg2+ ions in the residual pack were low and vertical variations were slight; 18O enrichment had occurred. The difference of the time at which melting of the snowpack starts at different altitudes influences the input of ions and isotopes to the underlying glacier.


Quaternary ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 14
Author(s):  
Zhengchen Li ◽  
Xianyan Wang ◽  
Jef Vandenberghe ◽  
Huayu Lu

The Wufo Basin at the margin of the northeastern Tibet Plateau connects the upstream reaches of the Yellow River with the lowland catchment downstream, and the fluvial terrace sequence in this basin provides crucial clues to understand the evolution history of the Yellow River drainage system in relation to the uplift and outgrowth of the Tibetan Plateau. Using field survey and analysis of Digital Elevation Model/Google Earth imagery, we found at least eight Yellow River terraces in this area. The overlying loess of the highest terrace was dated at 1.2 Ma based on paleomagnetic stratigraphy (two normal and two reversal polarities) and the loess-paleosol sequence (12 loess-paleosol cycles). This terrace shows the connections of drainage parts in and outside the Tibetan Plateau through its NE margin. In addition, we review the previously published data on the Yellow River terraces and ancient large lakes in the basins. Based on our new data and previous researches, we conclude that the modern Yellow River, with headwaters in the Tibet Plateau and debouching in the Bohai Sea, should date from at least 1.2 Ma. Ancient large lakes (such as the Hetao and Sanmen Lakes) developed as exorheic systems and flowed through the modern Yellow River at that time.


Sign in / Sign up

Export Citation Format

Share Document