Electrical structure of the Kunlun–Qinling fault system, northeastern Tibetan Plateau, inferred from 3-D inversion of magnetotelluric data

2019 ◽  
Vol 181 ◽  
pp. 103910 ◽  
Author(s):  
Xiangyu Sun ◽  
Yan Zhan ◽  
Lingqiang Zhao ◽  
Xiaobin Chen ◽  
Jianbao Sun ◽  
...  
2019 ◽  
Vol 11 (4) ◽  
pp. 435 ◽  
Author(s):  
Xiaogang Song ◽  
Yu Jiang ◽  
Xinjian Shan ◽  
Wenyu Gong ◽  
Chunyan Qu

Interferometric synthetic aperture radar (InSAR) data from 6 Envisat ASAR descending tracks; spanning the 2003–2010 period; was used to measure interseismic strain accumulation across the Northeastern Tibetan Plateau. Mean line-of-sight (LOS) ratemaps are computed by stacking atmospheric-corrected and orbital-corrected interferograms. The ratemaps from one track with different atmospheric-corrected results or two parallel; partially overlapping tracks; show a consistent pattern of left-lateral motion across the fault; which demonstrates the MERIS and ECMWF atmospheric correction works satisfactorily for small stain measurement of this region; even with a limited number of interferograms. By combining the measurements of InSAR and GPS; a fine crustal deformation velocity and strain rate field was estimated on discrete points with irregular density depending on the fault location; which revealed that the present-day slip rate on the Haiyuan fault system varies little from west to east. A change (2–3 mm/year) in line-of-sight (LOS) deformation rate across the fault is observed from the Jinqianghe segment to its eastern end. Inversion from the cross-fault InSAR profiles gave a shallow locking depth of 3–6 km on the main rupture of the 1920 earthquake. We therefore infer that the middle-lower part of the seismogenic layer on the 1920 rupture is not yet fully locked since the 1920 large earthquake. Benefit from high spatial resolution InSAR data; a low strain accumulation zone with high strain rates on its two ends was detected; which corresponds to the creeping segment; i.e., the Laohushan fault segment. Contrary to the previous knowledge of squeezing structure; an abnormal tension zone is disclosed from the direction map of principal stress; which is consistent with the recent geological study. The distribution of principal stress also showed that the expanding frontier of the northeastern plateau has crossed the Liupan Shan fault zone; even arrived at the northeast area of the Xiaoguan Shan. This result agrees with the deep seismic reflection profile.


2021 ◽  
Vol 188 ◽  
pp. 104451
Author(s):  
Guangyin Hu ◽  
Zhibao Dong ◽  
Zhengcai Zhang ◽  
Linhai Yang ◽  
Lewei Hao ◽  
...  

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Matthew J. Comeau ◽  
Michael Becken ◽  
Alexey V. Kuvshinov ◽  
Sodnomsambuu Demberel

AbstractCrustal architecture strongly influences the development and emplacement of mineral zones. In this study, we image the crustal structure beneath a metallogenic belt and its surroundings in the Bayankhongor area of central Mongolia. In this region, an ophiolite belt marks the location of an ancient suture zone, which is presently associated with a reactivated fault system. Nearby, metamorphic and volcanic belts host important mineralization zones and constitute a significant metallogenic belt that includes sources of copper and gold. However, the crustal structure of these features, and their relationships, are poorly studied. We analyze magnetotelluric data acquired across this region and generate three-dimensional electrical resistivity models of the crustal structure, which is found to be locally highly heterogeneous. Because the upper crust (< 25 km) is found to be generally highly resistive (> 1000 Ωm), low-resistivity (< 50 Ωm) features are conspicuous. Anomalous low-resistivity zones are congruent with the suture zone, and ophiolite belt, which is revealed to be a major crustal-scale feature. Furthermore, broadening low-resistivity zones located down-dip from the suture zone suggest that the narrow deformation zone observed at the surface transforms to a wide area in the deeper crust. Other low-resistivity anomalies are spatially associated with the surface expressions of known mineralization zones; thus, their links to deeper crustal structures are imaged. Considering the available evidence, we determine that, in both cases, the low resistivity can be explained by hydrothermal alteration along fossil fluid pathways. This illustrates the pivotal role that crustal fluids play in diverse geological processes, and highlights their inherent link in a unified system, which has implications for models of mineral genesis and emplacement. The results demonstrate that the crustal architecture—including the major crustal boundary—acts as a first‐order control on the location of the metallogenic belt.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maoliang Zhang ◽  
Zhengfu Guo ◽  
Sheng Xu ◽  
Peter H. Barry ◽  
Yuji Sano ◽  
...  

AbstractThe episodic growth of high-elevation orogenic plateaux is controlled by a series of geodynamic processes. However, determining the underlying mechanisms that drive plateau growth dynamics over geological history and constraining the depths at which growth originates, remains challenging. Here we present He-CO2-N2 systematics of hydrothermal fluids that reveal the existence of a lithospheric-scale fault system in the southeastern Tibetan Plateau, whereby multi-stage plateau growth occurred in the geological past and continues to the present. He isotopes provide unambiguous evidence for the involvement of mantle-scale dynamics in lateral expansion and localized surface uplift of the Tibetan Plateau. The excellent correlation between 3He/4He values and strain rates, along the strike of Indian indentation into Asia, suggests non-uniform distribution of stresses between the plateau boundary and interior, which modulate southeastward growth of the Tibetan Plateau within the context of India-Asia convergence. Our results demonstrate that deeply-sourced volatile geochemistry can be used to constrain deep dynamic processes involved in orogenic plateau growth.


Sign in / Sign up

Export Citation Format

Share Document