A study of secondary pyrite deformation and calcite veins in SAFOD damage zone with implications for aseismic creep deformation mechanism at depths >3 km

2018 ◽  
Vol 117 ◽  
pp. 14-26
Author(s):  
Jafar Hadizadeh ◽  
Alan P. Boyle
2005 ◽  
Vol 488-489 ◽  
pp. 749-752 ◽  
Author(s):  
Su Gui Tian ◽  
Keun Yong Sohn ◽  
Hyun Gap Cho ◽  
Kyung Hyun Kim

Creep behavior of AM50-0.4% Sb-0.9%Gd alloy has been studied at temperatures ranging from 150 to 200°C and at stresses ranging from 40 to 90 MPa. Results show that the creep rate of AM50-0.4%Sb-0.9%Gd alloy was mainly controlled by dislocation climb at low stresses under 50 MPa. The activation energy for the creep was 131.2 ± 10 kJ/mol and the stress exponent was in the range from 4 to 9 depending on the applied stress. More than one deformation-mechanism were involved during the creep of this alloy. Microstructures of the alloy consist of a–Mg matrix and fine particles, distinguished as Mg17Al12, Sb2Mg3, and Mg2Gd or Al7GdMn5 that were homogeneously distributed in the matrix of the alloy, which effectively reduced the movement of dislocations, enhancing the creep resistance. Many dislocations were identified to be present on non-basal planes after creep deformation.


1992 ◽  
Vol 56 (4) ◽  
pp. 390-398 ◽  
Author(s):  
Fuyuki Yoshida ◽  
Norio Matsuda ◽  
Keisuke Matsuura

2021 ◽  
Vol 9 ◽  
Author(s):  
Feng Geng ◽  
Haixue Wang ◽  
Jianlong Hao ◽  
Pengbo Gao

China’s Paleozoic deep carbonate effective reservoirs, mainly non-porous reservoirs, are generally formed under the interaction of late diagenesis, hydrothermal fluids, and structural fractures. Faults and their deformation mechanism and internal structure of fault zones play an important role in the formation of carbonate reservoirs and hydrocarbon accumulation. Based on the detailed analysis of outcrop data in Xike’er area, Tarim Basin, this paper systematically studies the deformation mechanism and internal structure of reverse fault in the carbonate rock, and discusses the reservoir characteristics, control factors and development rules. The study shows that the deformation mechanism of the fault in carbonate rocks is faulting and fracturing, and the dual structure of fault core and damage zone is developed. The fault core is mainly composed of fault breccia, fault gouge and calcite zone, and a large number of fractures are formed in the damage zone, which are cemented by calcite locally. The mineral composition and rare earth element tests show that the fault core has the dual effect of hydrothermal fluids and atmospheric fresh water, which is easy to be cemented by calcite; while the damage zone is dominated by atmospheric fresh water, which is a favorable zone for the development of fracture-vuggy reservoirs. Therefore, the damage zone is the “sweet spot” area of carbonate oil and gas enrichment, and generally shows strip distribution along the fault.


2020 ◽  
Author(s):  
Renato Diamanti ◽  
Costantino Zuccari ◽  
Selina Bonini ◽  
Gianluca Vignaroli ◽  
Giulio Viola

<p>A multi-scalar, multi-methodological approach has been used to characterize the deformation mechanisms and fluid-rock interaction processes within the Belluno Thrust (BT), a regional-scale thrust cutting through Mesozoic carbonates of the eastern Southern Alps of Italy. We report the first results of a systematic analysis of the deformation mechanisms that steered strain localization within the BT fault zone during seismogenic faulting. The WSW-ENE-striking BT contributed to development of the south-verging thrust-and-fold belt of the Southern Alps during the Late Oligocene – present time interval.        We studied an outstanding exposure of the BT in the greater Feltre region, where the BT juxtaposes an Early Jurassic oolitic and micritic limestone (the Calcari Grigi Group) in the hanging wall against an Upper Jurassic-Early Cretaceous pelagic and cherty limestone (the Maiolica Fm.). The BT is defined by a 2 m-thick damage zone formed at the expense of both the hanging wall and footwall blocks. Atop the damage zone is a millimetric principal slip surface (PSS) that strikes WSW-ENE and dips 40° to the NNW. Kinematic analysis confirms the top-to-the SSE transport along the BT. Several structural facies have been identified by means of detailed structural mapping and sampled from the damage zone (from within both the hanging- and the footwall blocks) and the PSS. The outcrop structural characterization has revealed a number of physically juxtaposed, yet different, structural facies: i) cohesive, weakly foliated proto- to ultracataclasite; ii) uncohesive, clay-rich gouge; iii) foliated domains with SC-C’ structures. Relatively unstrained host rock lithons are wrapped by these variably strained domains. Petrographic and microstructural analyses show evidence of pervasive pressure solution, with abundant stylolites, slickolites and foliated domains indicating an overall ductile behaviour. Calcite veins are also common in all recognised structural facies showing mutual cross-cutting relationships with the pressure-solution seams. This structural characterization has provided the basis for detailed image analysis of selected cataclastic textures to calculate fractal parameters for the particle size distribution (Ds) and morphology (Dr) of the clasts aiming at better understanding the cataclastic flow active in the BT fault rocks. Results from a range of representative samples suggest corrosive wear to be the main cataclastic process (Ds 1,41 ÷ 2,00; Dr 1,51 ÷ 1,88). Cathodoluminescence imaging revealed multiple generations of cement and permitted discriminating the first-order chemical characteristics of parental fluids and constraining the relationships between calcite veining and cementation. Two syn-tectonic cements have been identified: i) a bright-orange cement, preferentially surrounding carbonate clasts with highly irregular margins, indicative of the involvement of carbonate-reactive fluids; ii) a dull, homogeneous brown/black cement coexisting with a siliceous matrix, mantled clasts and local sigmoidal structures. The latter is at times observed as thin injections and fluidized structures.        Our preliminary results suggest that overall deformation was accommodated by creep and low-T crystal-plastic deformation possibly during inter-seismic phases as indicated by the presence of pressure-solution seams and foliated fabrics. Transient spikes of coseismic rupturing possibly promoted by multiple batches of overpressured fluids were accompanied by significant cataclasis and brittle strain localization.</p>


Sign in / Sign up

Export Citation Format

Share Document