scholarly journals Internal Structure Characteristics and Formation Mechanism of Reverse Fault in the Carbonate Rock, A Case Study of Outcrops in Xike’er Area, Tarim Basin, Northwest China

2021 ◽  
Vol 9 ◽  
Author(s):  
Feng Geng ◽  
Haixue Wang ◽  
Jianlong Hao ◽  
Pengbo Gao

China’s Paleozoic deep carbonate effective reservoirs, mainly non-porous reservoirs, are generally formed under the interaction of late diagenesis, hydrothermal fluids, and structural fractures. Faults and their deformation mechanism and internal structure of fault zones play an important role in the formation of carbonate reservoirs and hydrocarbon accumulation. Based on the detailed analysis of outcrop data in Xike’er area, Tarim Basin, this paper systematically studies the deformation mechanism and internal structure of reverse fault in the carbonate rock, and discusses the reservoir characteristics, control factors and development rules. The study shows that the deformation mechanism of the fault in carbonate rocks is faulting and fracturing, and the dual structure of fault core and damage zone is developed. The fault core is mainly composed of fault breccia, fault gouge and calcite zone, and a large number of fractures are formed in the damage zone, which are cemented by calcite locally. The mineral composition and rare earth element tests show that the fault core has the dual effect of hydrothermal fluids and atmospheric fresh water, which is easy to be cemented by calcite; while the damage zone is dominated by atmospheric fresh water, which is a favorable zone for the development of fracture-vuggy reservoirs. Therefore, the damage zone is the “sweet spot” area of carbonate oil and gas enrichment, and generally shows strip distribution along the fault.

2018 ◽  
Vol 36 (4) ◽  
pp. 801-819 ◽  
Author(s):  
Shuangfeng Zhao ◽  
Wen Chen ◽  
Zhenhong Wang ◽  
Ting Li ◽  
Hongxing Wei ◽  
...  

The condensate gas reservoirs of the Jurassic Ahe Formation in the Dibei area of the Tarim Basin, northwest China are typical tight sandstone gas reservoirs and contain abundant resources. However, the hydrocarbon sources and reservoir accumulation mechanism remain debated. Here the distribution and geochemistry of fluids in the Ahe gas reservoirs are used to investigate the formation of the hydrocarbon reservoirs, including the history of hydrocarbon generation, trap development, and reservoir evolution. Carbon isotopic analyses show that the oil and natural gas of the Ahe Formation originated from different sources. The natural gas was derived from Jurassic coal measure source rocks, whereas the oil has mixed sources of Lower Triassic lacustrine source rocks and minor amounts of coal-derived oil from Jurassic coal measure source rocks. The geochemistry of light hydrocarbon components and n-alkanes shows that the early accumulated oil was later altered by infilling gas due to gas washing. Consequently, n-alkanes in the oil are scarce, whereas naphthenic and aromatic hydrocarbons with the same carbon numbers are relatively abundant. The fluids in the Ahe Formation gas reservoirs have an unusual distribution, where oil is distributed above gas and water is locally produced from the middle of some gas reservoirs. The geochemical characteristics of the fluids show that this anomalous distribution was closely related to the dynamic accumulation of oil and gas. The period of reservoir densification occurred between the two stages of oil and gas accumulation, which led to the early accumulated oil and part of the residual formation water being trapped in the tight reservoir. After later gas filling into the reservoir, the fluids could not undergo gravity differentiation, which accounts for the anomalous distribution of fluids in the Ahe Formation.


2017 ◽  
Vol 5 (3) ◽  
pp. SK51-SK63 ◽  
Author(s):  
Zhongbo Gao ◽  
Wei Tian ◽  
Lei Wang ◽  
Yongmin Shi ◽  
Mao Pan

A basaltic dike-sill network is emplaced into the shallow subsurface of the Yingmai-2 dome, northern Tarim Basin, northwest China. The 3D seismic reflection imaging suggests that these dikes and sills are fed from an intrusion at the focal area of the dome. This basaltic intrusion has a width of approximately 3000 m and thickness of approximately 1000 m, and it is connected with a much larger Early Permian igneous body in the northern Tarim Basin. An unconformity between the Permian basalt lava flows and the base Triassic conglomerates truncates the dome, meaning that the dome must have developed prior to the Triassic. The basaltic intrusion that emplaced beneath the dome likely pushed the surrounding middle Cambrian salts away and instigated uplift of the overlying upper Cambrian to the lower Permian strata. In most cases, igneous activity plays a negative role on formation of oil and gas reservoirs. However, in the Yingmai-2 case, intrusive magmatic activity has caused “forced folding” of the overburdened strata and controlled the formation of a large commercial oil trap. We suggest that the magmatic activity thus also acts as a positive role on the local formation of a producing petroleum system.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 293
Author(s):  
Wei Tian ◽  
Xiaomin Li ◽  
Lei Wang

Disparities between fold amplitude (A) and intrusion thickness (Hsill) are critical in identifying elastic or inelastic deformation in a forced fold. However, accurate measurements of these two parameters are challenging because of the limit in separability and detectability of the seismic data. We combined wireline data and 3-D seismic data from the TZ-47 exploring area in the Tarim Basin, Northwest China, to accurately constrain the fold amplitude and total thickness of sills that induced roof uplift in the terrain. Results from the measurement show that the forced fold amplitude is 155.0 m. After decompaction, the original forced fold amplitude in the area penetrated by the well T47 ranged from 159.9 to 225.8 m, which overlaps the total thickness of the stack of sills recovered by seismic method (171.4 m) and well log method (181.0 m). Therefore, the fold amplitude at T47 area is likely to be elastic. In contrast, the outer area of the TZ-47 forced fold is characterized by shear-style deformation, indicating inelastic deformation at the marginal area. It is suggested that interbedded limestone layers would play an important role in strengthening the roof layers, preventing inelastic deformation during the emplacement of intrusive magma.


2021 ◽  
pp. 1-36
Author(s):  
Zhiwei Xiao ◽  
Li Wang ◽  
Ruizhao Yang ◽  
Dewei Li ◽  
Lingbin Meng

An ultradeep, faulted karst reservoir of Ordovician carbonate was discovered in the Shunbei area of the Tarim Basin. Fractured-cavity reservoirs buried beneath the large thickness of upper Ordovician mudstone were formed along the fault-karst belts. The hydrocarbon accumulation in these reservoirs is controlled by the fault system, and the oil-gas accumulation was affected by karstification and hydrothermal reformation. Previous studies and 2D modeling revealed that the reservoirs had “bright spot” amplitude responses like “string beads,” and they have developed along the strike-slip faults. However, describing such a complex fault-controlled karst system is still a difficult problem that has not been well addressed. We have sought to instruct the attribute expression of faulted karst reservoirs in the northern part of the Tarim Basin. We applied coherence and fault likelihood (FL) seismic attributes to image faults and fractures zones. We then used a trend analysis method to calculate the residual impedance from the impedance of the acoustic inversion, using the fact that residual impedance has higher lateral resolution in reservoir predictions. Finally, we integrated the coherence, FL, and residual impedance attributes into a new seismic attribute, the “fault-vuggy body,” with a certain fusion coefficient. The fault-vuggy body attribute establishes a connection between faults and karst cavities. This method could help in the characterization and prediction of carbonate faulted karst reservoirs. Available drilling data were used to validate that the fused fault-vuggy body attribute was an effective reservoir prediction method. As the seismic sections and slices along the layer help delineate, the distribution of bright spots and strike-slip faults indicates that the main strike-slip fault zones are the most favorable reservoirs in the Shunbei Oil and Gas Field.


Sign in / Sign up

Export Citation Format

Share Document