scholarly journals Transient deformation and long-term tectonic activity in the Eastern Alps recorded by mylonitic pegmatites

2022 ◽  
pp. 104507
Author(s):  
Felix Hentschel ◽  
Emilie Janots ◽  
Valerie Magnin ◽  
Lisa Brückner ◽  
Claudia A. Trepmann
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Alberto Scotti ◽  
Roberta Bottarin

AbstractThe present dataset contains information about aquatic macroinvertebrates and environmental variables collected before and after the implementation of a small “run-of-river” hydropower plant on the Saldur stream, a glacier-fed stream located in the Italian Central-Eastern Alps. Between 2015 and 2019, with two sampling events per year, we collected and identified 34,836 organisms in 6 sampling sites located within a 6 km stretch of the stream. Given the current boom of the hydropower sector worldwide, and the growing contribution of small hydropower plants to energy production, data here included may represent an important – and long advocated – baseline to assess the effects that these kinds of powerplants have on the riverine ecosystem. Moreover, since the Saldur stream is part of the International Long Term Ecological Research network, this dataset also constitutes part of the data gathered within this research programme. All samples are preserved at Eurac Research facilities.


2016 ◽  
Author(s):  
Margaux Mouchené ◽  
Peter van der Beek ◽  
Sébastien Carretier ◽  
Frédéric Mouthereau

Abstract. Alluvial megafans are sensitive recorders of landscape evolution, controlled by autogenic processes and allogenic forcing and influenced by the coupled dynamics of the fan with its mountainous catchment. The Lannemezan megafan in the northern Pyrenean foreland was abandoned by its mountainous feeder stream during the Quaternary and subsequently incised, leaving a flight of alluvial terraces along the stream network. We explore the relative roles of autogenic processes and external forcing in the building, abandonment and incision of a foreland megafan using numerical modelling and compare the results with the inferred evolution of the Lannemezan megafan. Autogenic processes are sufficient to explain the building of a megafan and the long-term entrenchment of its feeding river at time and space scales that match the Lannemezan setting. Climate, through temporal variations in precipitation rate, may have played a role in the episodic pattern of incision at a shorter time-scale. In contrast, base-level changes, tectonic activity in the mountain range or tilting of the foreland through flexural isostatic rebound appear unimportant.


2020 ◽  
Vol 178 (1) ◽  
pp. jgs2020-101
Author(s):  
L.R. Campbell ◽  
G.E. Lloyd ◽  
R.J. Phillips ◽  
R.C. Walcott ◽  
R.E. Holdsworth

Heterogeneous sequences of exhumed fault rocks preserve a record of the long-term evolution of fault strength and deformation behaviour during prolonged tectonic activity. Along the Outer Hebrides Fault Zone (OHFZ) in NW Scotland, numerous pseudotachylytes record palaeoseismic slip events within sequences of mylonites, cataclasites and phyllonites. To date, the kinematics and controls on seismicity within the long active history of the OHFZ have been poorly constrained. Additional uncertainties over the relative location of a meteorite impact and possible pre-OHFZ brittle faulting also complicate interpretation of the diffuse seismic record. We present kinematic analyses of seismicity in the OHFZ, combining observations of offset markers, en echelon injection veins and injection vein geometry to reconstruct slip directions and stress fields. This new dataset indicates that a range of fault orientations, slip directions and slip senses hosted seismicity in the OHFZ. Such complexity requires several stress field orientations, in contrast with the NW–SE Caledonian compression traditionally attributed to frictional melting along the OHFZ, indicating that seismicity had a long-term presence across the fault zone. Persistence of strong frictional failure alongside the simultaneous development of weak fault rocks and phyllonitic shear zones in parts of the OHFZ has significant implications for understanding seismic hazard along mature continental faults.Supplementary material: Tables listing analysed orientation measurements plus further information and sensitivity testing of palaeostress analysis parameters are available at https://doi.org/10.6084/m9.figshare.c.5134797


2020 ◽  
Author(s):  
Clément Boivin

<p>"LONG AND SHORT TIME EVOLUTION OF DEEP SEATED GRAVITATIONAL SLOPE DEFORMATION: CONTRIBUTION TO KNOWLEDGE OF PHENOMENA FOR THE MANAGEMENT OF ALEA IN THE ALPINE MOUNTAINS"</p><p> </p><p>C.Boivin <sup>a</sup>, J.P. Malet <sup>a</sup>, C. Bertrand <sup>b</sup>, F. Chabaux <sup>c</sup>, J. van der Woerd <sup>a</sup>, Y. Thiery <sup>d</sup>, F. Lacquement <sup>d</sup></p><p><sup>a  </sup>Institut de Physique du Globe de Strasbourg – IPGS/DA - UMR 7516 CNRS-Unistra</p><p><sup>b </sup> Laboratoire Chrono-Environnement – LCE / UMR 6249 CNRS – UFC</p><p><sup>c</sup>  Laboratoire d’Hydrologie et de Géochimie de Strasbourg – BISE / UMR 7517 – Unistra</p><p><sup>d</sup>  Bureau de Recherches Géologiques et Minières</p><p> </p><p>          The <strong>Deep Seated Gravitational Slope Deformation (DSGSD)</strong> are defined like a set of rock mass characterized by a generally slow movement and which can affect all the slopes of a valley or a mountain range (Agliardi and al., 2001, 2009; Panek and Klimes., 2016). The DSGSD is identified in many mountains (ex: Alps, Alaska, Rocky Mountains, Andes…) and it can affect both isolated low relief and very high mountain ranges (Panek and Klimes., 2016). This deep instability are identified in many case like the origin zone for important landslide like the example of La Clapière landslide in the Alpes Maritimes (Bigot-Cormier et al., 2005). The DSGSD represent an important object we must understand to anticipate catastrophic landslides.</p><p>          Actually, many factors that could be at the origin or controlling the evolution of DSGSD have been identified such as for example the structural heritage, the climate or the tectonic activity (Agliardi 2000; 2009; 2013; Jomard 2006; Sanchez et al., 2009; Zorzi et al., 2013; Panek and Klimes., 2016; Ostermann and Sanders., 2017; Blondeau 2018). The long-term and short-term evolution of DSGSD is still poorly understood but represents an important point to characterize in order to predict future major landslides. A first inventory of DSGSD began to be carried out by certain studies such as Blondeau 2018 or Crosta et al 2013 in the Alps. These same studies have also started to prioritize the factors controlling the evolution of DSGSD.</p><p>          It is in order to better understand the short-term (<100 years) and long-term (> 100 years) evolution of the DSGSD of the French Alpine massifs and the link with the occurrence of landslides, that this thesis project is developed. The main objective of this project, will be proposed models of the evolution of DSGSD since the last glaciations. But also to propose key interpretations of the future evolution to locate the areas likely to initiate landslides. Two study areas in the French Alpine massifs were chosen because they represent areas of referencing and localization gaps in DSGSD: Beaufortain and Queyras. They have the advantage of having a low lithological diversity making it possible to simplify the identification of the factors influencing the evolution of DSGSD. A geomorphological analysis on satellite data and on the ground is carried out to locate the DSGSD. Several dating (<sup>14</sup>C, <sup>10</sup>Be or <sup>36</sup>Cl) will be carried out to reconstruct the history of these objects and understand the factors that controlled their evolution.</p>


1966 ◽  
Vol 6 (43) ◽  
pp. 3-18
Author(s):  
W. Kick

AbstractThe relations between geodetic measurements of the surface level variations Δh and net budget measurements by stakes arc discussed. In 1961, 24 yr. after Finsterwalder’s survey, Tunsbergdalsbreen, the largest and most regular of the 26 outlet glaciers of Jostedalsbreen, was re-surveyed. The variations in the length, area, ice thickness, and volume of its tongue are shown. The lake Brimkjelen was 99 m. deep in 1937; it disappeared in 1949. From 1900–40 the whole Jostedalsbre lost 0.4 m./yr., about the same amount as the glaciers of the eastern Alps. The ice thickness of the Tunsbergdalsbre tongue diminished by −ΔhA = 0.46+0.0022 (1500−A) m./yr. from 1937–61; for the eastern Alps from 1920–50 −ΔhA ≈ 0.53+0.0021 (2850−A) m./yr. where A is the altitude. The change of Δh with altitude is much the same. The amounts of the retreat of the Alpine glaciers, of Tunsbergdalshreen, and at Werenskioldbreen, Vestspitsbergen, were the greater the higher the latitude. The numerical relations between Δh, net budget, and ice movement are shown. The temporary velocity transverse profile of 1937 served as a prototype for the streaming mode of flow, but in 1961 the glacier partially showed Blockschollen movement, although the velocity had decreased by more than 30 per cent. The article is accompanied by a map showing ice surface contours in 1937 and 1961.


2021 ◽  
Author(s):  
Timothée Jautzy ◽  
Gilles Rixhon ◽  
Régis Braucher ◽  
Laurent Schmitt ◽  
Aster Team*

<p><span>The Vosges Mountains in NE France belong to the belt of Variscan massifs located in the foreland of the Alps. Despite its rather limited extension barely reaching 6000 km², this range of low mountains peaking at ~1425 m presents three contrasting primary characteristics. Firstly, a bipartite N-S subdivision can be achieved based on the geological basement: whereas the southern part, traditionally referred to as the crystalline Vosges, is composed of a mosaic of Palaeozoic rocks, including igneous (mostly intrusive and secondarily extrusive), metamorphic, and sedimentary rocks, the northern part is much more homogeneous given its Triassic sandstone cover (“sandstone Vosges”). Secondly, a clear E-W topographic gradient characterises the mountain range. By contrast to the steep hillslopes and elevation drops regularly exceeding 600 m (sometimes reaching 900-1000 m) between the summits and the valley floors on the eastern side (Alsace; south-western border of the Upper Rhine Graben, URG), the western side exhibits more gently-sloping hillslopes along with a longer extension (Lorraine; eastern border of the Parisian Basin). This results from the sharp E-W contrast in Late Cenozoic tectonic activity between sustained subsidence in the URG to the east and weak rock uplift characterising the Parisian Basin to the west. Finally, the imprint left by Quaternary climatic fluctuations yielded a N-S gradient: whereas the southern part (roughly covering 80-90% of the crystalline Vosges) hosted abundant valley glaciers and still bears traces of significant glacial erosion (cirques and U-shaped valleys), the northern part (mostly the sandstone Vosges) was void of ice cover.</span></p><p><span>In spite of these advantageous characteristics, very little is known about the Quaternary evolution of the massif, in particular regarding the long-term interactions between denudation</span><span>, lithological control, climatic forcing and tectonic activity. </span><span>Against this background, this contribution aims to present the first data of long-term, massif-wide denudation. Modern stream sediments from 21 river catchments of different size draining the whole massif were thus sampled for </span><span><em>in situ</em></span> <sup><span>10</span></sup><span>Be concentration measurements at the outlet of their mountainous reach. Catchment-wide denudation rates inferred from cosmogenic </span><sup><span>10</span></sup><span>Be will be combined with the analysis of morphometric parameters and structural connectivity resulting from the processing of a high-resolution DEM (5 m). Catchment selection was operated according to the threefold subdivision above: i.e. heterogeneous vs homogenous petrography, tectonically-active eastern side vs “quiescent” western side and glaciated vs unglaciated catchments. We thus test the main hypothesis that the four NE, NW, SE, SW quarters of the Vosges massif shall be characterised by contrasting denudation rates, reflecting the respective role played by the controlling factors on long-term denudation. To our knowledge, this contribution is the first attempt to quantify denudation at the massif scale of a European low mountain range. This is especially relevant as long-term landscape evolution in the Variscan belt, by contrast to the numerous works focusing on denudation in high-mountains ranges (e.g. the Alps), has been regularly disregarded in recent geomorphological studies.</span></p><p><span>*Georges Aumaître, Didier L. Bourlès and Karim Keddadouche</span></p>


2020 ◽  
Vol 12 (21) ◽  
pp. 3586
Author(s):  
Rebecca A. Witkosky ◽  
Joann M. Stock ◽  
David M. Tratt ◽  
Kerry N. Buckland ◽  
Paul M. Adams ◽  
...  

The 1999 Hector Mine earthquake ruptured to the surface in eastern California, with >5 m peak right-lateral slip on the Lavic Lake fault. The cumulative offset and geologic slip rate of this fault are not well defined, which inhibits tectonic reconstructions and risk assessment of the Eastern California Shear Zone (ECSZ). With thermal infrared hyperspectral airborne imagery, field data, and auxiliary information from legacy geologic maps, we created lithologic maps of the area using supervised and unsupervised classifications of the remote sensing imagery. We optimized a data processing sequence for supervised classifications, resulting in lithologic maps over a test area with an overall accuracy of 71 ± 1% with respect to ground-truth geologic mapping. Using all of the data and maps, we identified offset bedrock features that yield piercing points along the main Lavic Lake fault and indicate a 1036 +27/−26 m net slip, with 1008 +14/−17 m horizontal and 241 +51/−47 m vertical components. For the contribution from distributed shear, modern off-fault deformation values from another study imply a larger horizontal slip component of 1276 +18/−22 m. Within the constraints, we estimate a geologic slip rate of <4 mm/yr, which does not increase the sum geologic Mojave ECSZ rate to current geodetic values. Our result supports previous suggestions that transient tectonic activity in this area may be responsible for the discrepancy between long-term geologic and present-day geodetic rates.


2017 ◽  
Vol 5 (1) ◽  
pp. 125-143 ◽  
Author(s):  
Margaux Mouchené ◽  
Peter van der Beek ◽  
Sébastien Carretier ◽  
Frédéric Mouthereau

Abstract. Alluvial megafans are sensitive recorders of landscape evolution, controlled by both autogenic processes and allogenic forcing, and they are influenced by the coupled dynamics of the fan with its mountainous catchment. The Lannemezan megafan in the northern Pyrenean foreland was abandoned by its mountainous feeder stream during the Quaternary and subsequently incised, leaving a flight of alluvial terraces along the stream network. We use numerical models to explore the relative roles of autogenic processes and external forcing in the building, abandonment and incision of a foreland megafan, and we compare the results with the inferred evolution of the Lannemezan megafan. Autogenic processes are sufficient to explain the building of a megafan and the long-term entrenchment of its feeding river on time and space scales that match the Lannemezan setting. Climate, through temporal variations in precipitation rate, may have played a role in the episodic pattern of incision on a shorter timescale. In contrast, base-level changes, tectonic activity in the mountain range or tilting of the foreland through flexural isostatic rebound do not appear to have played a role in the abandonment of the megafan.


2018 ◽  
Vol 55 ◽  
pp. 00001 ◽  
Author(s):  
Marek Kaczorowski ◽  
Damian Kasza ◽  
Ryszard Zdunek ◽  
Roman Wronowski

Tiltmeter observations with application of horizontal pendulums have been carried out for 40 years in the Geodynamic Laboratory in Książ. Long-term observations have not indicated any correlation of these data with meteorological or seasonal phenomena. Following an epoch of fast azimuth changes, a gradual compensation process took place, excluding the effect of gravitational creep of the rock massif. An assumption was made that the observed large changes of the equilibrium azimuths of the horizontal pendulums that result from tectonic tilt of the foundation blocks. Multiannual tiltmeter observations allowed to determine the temporal characteristics and amplitude tectonic effects. Intervals of strong tectonic activity in the rock massif of the Świebodzice Depression last from several days to over ten weeks and are separated by several tens of hours of low activity. Amplitude of the rock massif deformation reaches values from over ten to several tens of amplitudes of the tidal signal, i.e. up to several hundreds of micrometres. Water-tube tiltmeters (WT) launched in 2003 have confirmed the characteristics of tectonic effects and their incidental occurrence. Beside the tilt effects, WT have enabled to confirm vertical movement of the foundation blocks. Geological investigations in the Świebodzice Depression have indicated the presence of a numerous faults separating particular blocks in the rock massif. The presence of this fault system favours the dislocation of foundation blocks, which results in a quake-less relaxation of tectonic stresses and absence lack of seismic activity in the Świebodzice Depression. Foundation blocks separated by faults combined with the multiscale measurement system of WTs form a natural detector of regional tectonic activity, allowing to determine with micrometric resolution the representative function of tectonic activity in the rock massif of the Świebodzice Depression.


Sign in / Sign up

Export Citation Format

Share Document