scholarly journals Targeting intestinal epithelial cell–programmed necrosis alleviates tissue injury after intestinal ischemia/reperfusion in rats

2018 ◽  
Vol 225 ◽  
pp. 108-117 ◽  
Author(s):  
Xiang Li ◽  
Yihong Ling ◽  
Zhongming Cao ◽  
Jiantong Shen ◽  
Shaoqian Chen ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Ozkan Onal ◽  
Fahri Yetisir ◽  
A. Ebru Salman Sarer ◽  
N. Dilara Zeybek ◽  
C. Oztug Onal ◽  
...  

Objectives. Intestinal ischemia-reperfusion injury is associated with mucosal damage and has a high rate of mortality. Various beneficial effects of ozone have been shown. The aim of the present study was to show the effects of ozone in ischemia reperfusion model in intestine.Material and Method. Twenty eight Wistar rats were randomized into four groups with seven rats in each group. Control group was administered serum physiologic (SF) intraperitoneally (ip) for five days. Ozone group was administered 1 mg/kg ozone ip for five days. Ischemia Reperfusion (IR) group underwent superior mesenteric artery occlusion for one hour and then reperfusion for two hours. Ozone + IR group was administered 1 mg/kg ozone ip for five days and at sixth day IR model was applied. Rats were anesthetized with ketamine∖xyzlazine and their intracardiac blood was drawn completely and they were sacrificed. Intestinal tissue samples were examined under light microscope. Levels of superoxide dismutase (SOD), catalase (CAT), glutathioneperoxidase (GSH-Px), malondyaldehide (MDA), and protein carbonyl (PCO) were analyzed in tissue samples. Total oxidant status (TOS), and total antioxidant capacity (TAC) were analyzed in blood samples. Data were evaluated statistically by Kruskal Wallis test.Results. In the ozone administered group, degree of intestinal injury was not different from the control group. IR caused an increase in intestinal injury score. The intestinal epithelium maintained its integrity and decrease in intestinal injury score was detected in Ozone + IR group. SOD, GSH-Px, and CAT values were high in ozone group and low in IR. TOS parameter was highest in the IR group and the TAC parameter was highest in the ozone group and lowest in the IR group.Conclusion. In the present study, IR model caused an increase in intestinal injury.In the present study, ozone administration had an effect improving IR associated tissue injury. In the present study, ozone therapy prevented intestine from ischemia reperfusion injury. It is thought that the therapeutic effect of ozone is associated with increase in antioxidant enzymes and protection of cells from oxidation and inflammation.


2007 ◽  
Vol 35 (05) ◽  
pp. 805-819 ◽  
Author(s):  
Ke-Xuan Liu ◽  
Wei He ◽  
Timo Rinne ◽  
Ying Liu ◽  
Ming-Qi Zhao ◽  
...  

Apoptosis was demonstrated to be a major mode of intestinal epithelial cell death caused by intestinal ischemia/reperfusion ( II / R ). Ceramide has been proposed as a messenger for apoptosis. The present study was aimed to investigate the effect of Ginkgo biloba extract 761 (EGb 761) pretreatment on II / R -induced intestinal mucosal epithelial apoptosis in rats and the mechanism related to ceramide. The rat model of II / R injury was produced by clamping superior mesenteric artery for 60 min followed by reperfusion for 180 min. Twenty four rats were randomly allocated into Sham, II / R and EGb + II / R groups. In EGb + II / R group, EGb 761 (100 mg/kg per day) was administered intragastrically for 7 days before the surgery. Animals in II / R and sham groups were treated with equal volume of normal saline solution. Intestinal mucosal epithelial apoptosis was detected via electron microscopy and TUNEL method. Lipid peroxidation in intestinal mucosa was determined by detecting the malondialdehyde level and the activities of superoxide dismutase and peroxidase glutathione. The ceramide generation and sphingomyelinase (SMase) mRNA expression in intestinal mucosa were determined by high performance, thin layer chromatography, and RT-PCR, respectively. II / R caused intestinal mucosal epithelial apoptosis and over-production of the ceramide accompanied by up-regulation of SMase mRNA expression and increases of lipid peroxidation. EGb 761 pretreatment significantly decreased apoptosis index, and concurrently reduced the ceramide generation accompanied by down-regulation of SMase expression and inhibition of lipid peroxidation. The findings indicate that EGb 761 pretreatment attenuates II / R -induced intestinal epithelial apoptosis, which might be attributable to its antioxidant action of mediating ceramide pathway.


Sign in / Sign up

Export Citation Format

Share Document