An analytical investigation of free vibration for a thin-walled regular polygonal prismatic shell with simply supported odd/even number of sides

2005 ◽  
Vol 284 (1-2) ◽  
pp. 520-530 ◽  
Author(s):  
Sen. Liang ◽  
H.L. Chen ◽  
T.X. Liang
1981 ◽  
Vol 48 (1) ◽  
pp. 169-173 ◽  
Author(s):  
S. Narayanan ◽  
J. P. Verma ◽  
A. K. Mallik

Free-vibration characteristics of a thin-walled, open cross-section beam, with unconstrained damping layers at the flanges, are investigated. Both uncoupled transverse vibration and the coupled bending-torsion oscillations, of a beam of a top-hat section, are considered. Numerical results are presented for natural frequencies and modal loss factors of simply supported and clamped-clamped beams.


1974 ◽  
Vol 41 (4) ◽  
pp. 1087-1093 ◽  
Author(s):  
J. T. S. Wang ◽  
S. A. Rinehart

This study is concerned with the free-vibration characteristics of thin cylindrical shells reinforced by longitudinal stringers for any edge boundary conditions. The structural system is treated as an isotropic cylinder interacting with a set of discrete thin-walled stringers. Frequencies of simply supported shells obtained according to the present analysis compare favorably with Ritz solution and existing experimental data. For mode shapes, the present analysis often yields much better results than Ritz solution. Numerical results for frequencies and mode shapes for clamped-clamped cylindrical shells are included, and frequencies of a shell with very flexible stiffeners compare favorably with frequencies of an unstiffened shell.


2021 ◽  
pp. 109963622199386
Author(s):  
Hessameddin Yaghoobi ◽  
Farid Taheri

An analytical investigation was carried out to assess the free vibration, buckling and deformation responses of simply-supported sandwich plates. The plates constructed with graphene-reinforced polymer composite (GRPC) face sheets and are subjected to mechanical and thermal loadings while being simply-supported or resting on different types of elastic foundation. The temperature-dependent material properties of the face sheets are estimated by employing the modified Halpin-Tsai micromechanical model. The governing differential equations of the system are established based on the refined shear deformation plate theory and solved analytically using the Navier method. The validation of the formulation is carried out through comparisons of the calculated natural frequencies, thermal buckling capacities and maximum deflections of the sandwich plates with those evaluated by the available solutions in the literature. Numerical case studies are considered to examine the influences of the core to face sheet thickness ratio, temperature variation, Winkler- and Pasternak-types foundation, as well as the volume fraction of graphene on the response of the plates. It will be explicitly demonstrated that the vibration, stability and deflection responses of the sandwich plates become significantly affected by the aforementioned parameters.


1992 ◽  
Vol 158 (2) ◽  
pp. 383-386 ◽  
Author(s):  
K.L. Prasad ◽  
A. Venkateshwar Rao ◽  
B. Nageswara Rao

1999 ◽  
Author(s):  
Sungsoo Na ◽  
Liviu Librescu

Abstract A study of the dynamical behavior of aircraft wings modeled as doubly-tapered thin-walled beams, made from advanced anisotropic composite materials, and incorporating a number of non-classical effects such as transverse shear, and warping inhibition is presented. The supplied numerical results illustrate the effects played by the taper ratio, anisotropy of constituent materials, transverse shear flexibility, and warping inhibition on free vibration and dynamic response to time-dependent external excitations. Although considered for aircraft wings, this analysis and results can be also applied to a large number of structures such as helicopter blades, robotic manipulator arms, space booms, tall cantilever chimneys, etc.


Sign in / Sign up

Export Citation Format

Share Document