A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat

2011 ◽  
Vol 330 (26) ◽  
pp. 6311-6335 ◽  
Author(s):  
Thanh Danh Le ◽  
Kyoung Kwan Ahn
2012 ◽  
Vol 30 (6) ◽  
pp. 063201 ◽  
Author(s):  
Katsuya Iwaya ◽  
Ryota Shimizu ◽  
Akira Teramura ◽  
Seiji Sasaki ◽  
Toru Itagaki ◽  
...  

2013 ◽  
Vol 694-697 ◽  
pp. 316-320
Author(s):  
Xiang Jun Kong ◽  
Er Ming Song ◽  
Chang Zheng Chen

Isolation system of the heat water pumps can be simplified as a double sources exciting and double output double-deck vibration isolation system model, expressions of transmitted power flow and vibration speed to the basement are deduced based on the double sources exciting and double output double-deck vibration isolation system electric-force(E-F) analog picture, the curves of power flow and vibration speed transmitted to basement how the upper deck vibration isolation and intermediate mass effect are drawn by using mat lab program. The results show that the adjusting the upper deck vibration isolation stiffness parameters has little effect on the amplitude of vibration power flow, increasing intermediate mass can move first peak to the low frequency, increasing intermediate mass can obviously reduce t transmitted power flow and transmitted vibration speed amplitude to the basement.


2021 ◽  
pp. 13-17
Author(s):  
D. V. Sitnikov ◽  
◽  
A. A. Burian ◽  

The paper considers a vibration isolation system, in which a force is applied to the moving mass of the active dynamic vibration damper by an actuator in proportion to the measured value of the base response. The amplitude-frequency and impulse characteristics are plotted depending on the parameters of the system, assuming the actuator without distortion generates the force proportional to the base response. It is shown that the considered vibration isolation system is quite effective in the low-frequency region, including in the resonance region of the passive system, both in stationary and nonstationary modes of vibroactive forces


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Kai Meng ◽  
Yi Sun ◽  
Huayan Pu ◽  
Jun Luo ◽  
Shujin Yuan ◽  
...  

In this study, a novel vibration isolator is presented. The presented isolator possesses the controllable stiffness and can be employed in vibration isolation at a low-resonance frequency. The controllable stiffness of the isolator is obtained by manipulating the negative stiffness-based current in a system with a positive and a negative stiffness in parallel. By using an electromagnetic device consisting of permanent magnetic rings and coils, the designed isolator shows that the stiffness can be manipulated as needed and the operational stiffness range is large in vibration isolation. We experimentally demonstrate that the modeling of controllable stiffness and the approximation of the negative stiffness expressions are effective for controlling the resonance frequency and the transmissibility of the vibration isolation system, enhancing applications such as warship stealth technology, vehicles suspension system, and active vibration isolator.


2017 ◽  
Vol 865 ◽  
pp. 480-485
Author(s):  
Jian Liang Li ◽  
Xiao Xi Liu ◽  
Shu Qing Li ◽  
Zhi Fei Tao ◽  
Lei Ma

The research mainly focuses on the performance of the controllable hypocenter in the low frequency band. The hybrid vibration isolation method based on the disturbance observer PID control algorithm is used to improve the excitation signal quality. Based on the analysis of the structure and working principle of vibration isolator, the physical model and mathematical model are established, and the simulation test of ZK-5VIC virtual test vibration and control system is carried out. The experimental platform of hybrid vibration isolation system with low frequency interference is set up. The experiment of excitation and acquisition of low frequency signal is carried out, which provides the theoretical basis and guarantee for the vibration isolation technology in the low frequency range below 3Hz.


1994 ◽  
Author(s):  
Robin T. Stebbins ◽  
David Newell ◽  
Sam N. Richman ◽  
Peter L. Bender ◽  
James E. Faller ◽  
...  

2003 ◽  
Vol 46 (3) ◽  
pp. 807-812 ◽  
Author(s):  
Takeshi MIZUNO ◽  
Takefumi TOUMIYA ◽  
Masaya TAKASAKI

2013 ◽  
Vol 397-400 ◽  
pp. 295-303 ◽  
Author(s):  
Fu Niu ◽  
Ling Shuai Meng ◽  
Wen Juan Wu ◽  
Jing Gong Sun ◽  
Wei Hua Su ◽  
...  

The quasi-zero-stiffness vibration isolation system has witnessed significant development due to the pressing demands for low frequency and ultra-low frequency vibration isolation. In this study, the isolation theory and the characteristic of the quasi-zero-stiffness vibration isolation system are illustrated. Based on its implementation mechanics, a comprehensive assessment of recent advances of the quasi-zero-stiffness vibration isolation system is presented. The future research directions are finally prospected.


Sign in / Sign up

Export Citation Format

Share Document