Dynamic model for free vibration and response analysis of rotating beams

2013 ◽  
Vol 332 (22) ◽  
pp. 5917-5928 ◽  
Author(s):  
Hyungrae Kim ◽  
Hong Hee Yoo ◽  
Jintai Chung
2020 ◽  
Vol 216 ◽  
pp. 108119
Author(s):  
Xun Meng ◽  
Ding Zhou ◽  
Moon Kyum Kim ◽  
Yun Mook Lim

Author(s):  
Pawan Kumar ◽  
SP Harsha

Static and free vibration response analysis of a functionally graded piezoelectric material plate under thermal, electric, and mechanical loads is done in this study. The displacement field is acquired using the first-order shear deformation theory, and the Hamilton principle is applied to deduce the motion equations. Temperature-dependent material properties of the functionally graded material plate are used, and these properties follow the power-law distributions along the thickness direction. However, the properties of piezoelectric material layers are assumed to be independent of the electric field and temperature. Finite element formulation for the functionally graded piezoelectric material plate is done using the combined effect of mechanical and electrical loads. The effects of parameters like electrical loading, volume fraction exponent N, and temperature distribution on the static and free vibration characteristics of the functionally graded piezoelectric material square plate are analyzed and presented. Responses are obtained in terms of the centerline deflection, axial stress and the nondimensional natural frequency with various boundary conditions. It is observed that the centerline deflection and nondimensional natural frequency increases as exponent N increases. At the same time, the axial stress decreases with an increase in exponent N. The findings of the static and the free vibration analysis suggest the potential application of the functionally graded piezoelectric material plate in the piezoelectric actuator as well as for sensing deflection in bimorph.


Author(s):  
Chen Xiulong ◽  
Jiang Shuai ◽  
Deng Yu ◽  
Wang Qing

In order to understand dynamic responses of planar rigid-body mechanism with clearance, the dynamic model of the mechanism with revolute clearance is proposed and the dynamic analysis is realized. First, the kinematic model of the revolute clearance is built; the amount of penetration depth and relative velocity between the elements of the revolute clearance joint is obtained. Second, Lankarani-Nikravesh (L-N) and the novel nonlinear contact force model are both used to describe the normal contact force of the revolute clearance, and the tangential contact force of the revolute clearance is built by modified Coulomb friction model. Third, the dynamic model of a two degrees-of-freedom (2DOFs) nine bars rigid-body mechanism with a revolute clearance is built by the Lagrange equation. The fourth-order Runge–Kutta method has been utilized to solve the dynamic model. And the effects of different driving speeds of cranks, different clearance values, and different friction coefficients on dynamic response are analyzed. Finally, in order to prove the validity of numerical calculation result, the virtual prototype model of 2DOFs nine bars mechanism with clearance is modeled and its dynamic responses are analyzed by adams software. This research could supply theoretical basis for dynamic modeling, dynamic behaviors analysis, and clearance compensation control of planar rigid-body mechanism with clearance.


2014 ◽  
Vol 538 ◽  
pp. 79-82
Author(s):  
Zhi Dong Huang ◽  
Yun Pu Du ◽  
Han Xiao Li ◽  
Xiu Li Sun ◽  
Yu Wang

The characteristics of oval gear is analyzed. The parameters of oval gear are chosen and calculated. The three-dimensional solid modeling of oval gear is achieved. The dynamic model of oval gear is established by FEM and modal analysis of oval gear is investigated. The natural frequency and major modes of the first six orders are clarified. The method and the result facilitate the dynamic design and dynamic response analysis of oval gear.


2013 ◽  
Vol 404 ◽  
pp. 312-317 ◽  
Author(s):  
Xian Zeng Liu ◽  
Jun Zhang

A dynamic model for helical planetary gear train (HPGT) is proposed. Based on the model, the free vibration characteristics, steady-state dynamic responses and effects of design parameters on system dynamics are investigated through numerical simulations. The free vibration of the HGPT is classified into 3 categories. The classified vibration modes are demonstrated as axial translational and torsional mode (AT mode), radial translational and rotational mode (RR mode) and planet mode (P mode) followed by the characteristics of each category. The simulation results agree well with those of previous discrete model when neglecting the component flexibilities, which validates the correctness of the present dynamic model. The steady-state dynamic responses indicate that the dynamic meshing forces fluctuate about the average static values and the time-varying meshing stiffness is one of the major excitations of the system. The parametric sensitivity analysis shows that the impact of the central component bearing stiffness on the dynamic characteristic of the HPGT system is significant.


2014 ◽  
Vol 556-562 ◽  
pp. 4297-4302 ◽  
Author(s):  
Yong Jun Liu ◽  
Hong Sheng Ding ◽  
Tie Fu ◽  
Qiang Jia ◽  
Meng Wang

Taking the parallel stabilizing platform based on 6-UPS structure as the research object, we deduced the multi-rigid-body dynamics modeling process by using the Lagrange method, and finished the dynamic response analysis of the platform. Then we conducted the collaborative modeling and simulation of the coupled dynamics analysis of the platform with ProE, ANSYS and ADAMS. The results indicate the correctness of the theoretical derivation of the multi-rigid-body dynamic model and the feasibility and necessity of collaborative simulation of the coupled dynamic model, which lay a foundation for further optimization design and practical application of the parallel platform.


2013 ◽  
Vol 423-426 ◽  
pp. 1516-1519
Author(s):  
Zhi Dong Huang ◽  
An Min Hui ◽  
Guang Yang ◽  
Rui Yang Li

The characteristics of four-order elliptical gear is analyzed. The parameters of four-order elliptical gear are chosen and calculated. The three-dimensional solid modeling of four-order elliptical gear is achieved. The dynamic model of four-order elliptical gear is established by finite element method and modal analysis of four-order elliptical gear is investigated. The natural frequencies and major modes of the first six orders are clarified. The method and the result facilitate the dynamic design and dynamic response analysis of high-order elliptical gear.


2021 ◽  
Vol 276 ◽  
pp. 01012
Author(s):  
Chao Li ◽  
Jigang Wang

There are few studies on space-driven gear systems in the existing literature. In this paper, a spacedriven two-stage spur gear system is taken as the research object, and a 10 DOF dynamic model is established. A nonlinear dynamic response analysis was performed. The backlash was introduced into the dynamic model, and the time-varying stiffness was corrected to make the theoretical model closer to reality. By comparing two kinds of dynamic response curves with and without return difference, it was illustrated that the influence of return difference on dynamic transmission error in a gear system. The results obtained in this paper provide a reference and basis for subsequent research.


Sign in / Sign up

Export Citation Format

Share Document