Modeling, design and experiments of a ball-screw inerter with mechanical diodes

2021 ◽  
Vol 504 ◽  
pp. 116121
Author(s):  
Li Yuehao ◽  
Cheng Zhe ◽  
Hu Niaoqing ◽  
Yang Yi ◽  
Xiao Zhuo
Keyword(s):  
2016 ◽  
Vol 9 (5) ◽  
pp. 324 ◽  
Author(s):  
Zain Retas ◽  
Lokman Abdullah ◽  
Syed Najib Syed Salim ◽  
Zamberi Jamaludin ◽  
Nur Amira Anang

2021 ◽  
Vol 70 ◽  
pp. 1-11
Author(s):  
Vibhor Pandhare ◽  
Xiang Li ◽  
Marcella Miller ◽  
Xiaodong Jia ◽  
Jay Lee

Author(s):  
Qiang Cheng ◽  
Baobao Qi ◽  
Hongyan Chu ◽  
Ziling Zhang ◽  
Zhifeng Liu ◽  
...  

The combination of sliding/rolling motion can influence the degree of precision degradation of ball screw. Precision degradation modeling and factors analysis can reveal the evolution law of ball screw precision. This paper presents a precision degradation model for factors analysis influencing precision due to mixed sliding-rolling motion. The precision loss model was verified through the comparison of theoretical models and experimental tests. The precision degradation due to rolling motion between the ball and raceway accounted for 29.09% of the screw precision loss due to sliding motion. Additionally, the total precision degradation due to rolling motion accounted for 21.03% of the total sliding precision loss of the screw and nut, and 17.38% of the overall ball screw precision loss under mixed sliding-rolling motion. In addition, the effects of operating conditions and structural parameters on precision loss were analyzed. The sensitivity coefficients of factors influencing were used to quantitatively describe impact degree on precision degradation.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4378
Author(s):  
Jorge A. Reyes-Avendaño ◽  
Ciro Moreno-Ramírez ◽  
Carlos Gijón-Rivera ◽  
Hugo G. Gonzalez-Hernandez ◽  
José Luis Olazagoitia

Energy harvesting shock absorbers (EHSA) have made great progress in recent years, although there are still no commercial solutions for this technology. This paper addresses the question of whether, and under what conditions, an EHSA can completely replace a conventional one. In this way, any conventional suspension could be replicated at will, while recovering part of the wasted energy. This paper focuses on mimicking the original passive damper behavior by continuously varying the electrical parameters of the regenerative damper. For this study, a typical ball-screw EHSA is chosen, and its equivalent suspension parameters are tried to be matched to the initial damper. The methodology proposes several electrical control circuits that optimize the dynamic behavior of the regenerative damper from the continuous variation of a load resistance. The results show that, given a target damper curve, the regenerative damper can adequately replicate it when there is a minimum velocity in the damper. However, when the damper velocity is close to zero, the only way to compensate for inertia is through the introduction of external energy to the system.


2021 ◽  
Vol 28 (5) ◽  
pp. 1357-1376
Author(s):  
Bao-bao Qi ◽  
Qiang Cheng ◽  
Shun-lei Li ◽  
Zhi-feng Liu ◽  
Cong-bin Yang

Author(s):  
Kang-Woo Joo ◽  
Kwang-Sun Kim ◽  
Jun-Young Kim ◽  
Hee-Rak Beom

In the semiconductor chip mounting process, the size of semiconductor chips is decreasing, while the number of mounting the chips per time are increasing, and this trend is being accelerated. The research activities to develop the chip mounters, which are able to mount rapidly and accurately, have been needed in the industry. With this background, the linear motor in the chip mounters has been an important part. The electro-magnetic type linear motor has many advantages such as direct linear reciprocating motion being compared with the rotary motor and the ball screw type linear motor. However, the electro-magnetic linear motor has thermal problems. These problems affect life and performance of motor and bring out the other problems such as thermal stress and deformation. The heat transfer analysis is difficult to solve thermal problems because the moving and fixed parts coexist. The trial & error methods have been therefore used under majority of cases. In this paper, we investigated the thermal deformation problems of linear motor in a chip mounter and the optimized parameters to design the motion parts of electro-magnetic linear motor were obtained.


Author(s):  
H Lipkin ◽  
J Duffy

The theory of screws was largely developed by Sir Robert Stawell Ball over 100 years ago to investigate general problems in rigid body mechanics. Nowadays, screw theory is applied in many different but related forms including dual numbers, Plilcker coordinates and Lie algebra. An overview of these methodologies is presented along with a perspective on Ball. Screw theory has re-emerged after a hiatus to become an important tool in robot mechanics, mechanical design, computational geometry and multi-body dynamics.


2015 ◽  
Vol 642 ◽  
pp. 212-216
Author(s):  
Yi Haung ◽  
Chin Chung Wei

Ball screw is a high-precision and high performance linear drive of mechanical elements. The frictional heat of internal components what is very significant impact for platform transmission in high speed and the high axial load and causes the thermal expansion of element. In this research , the influence of different greases on ball screw is investigated in thermal rising of nut and driving torque in high speed and high axial load. A vertical motion platform was used for driving performance test. Thermal rising of nut of ball screw and the variance of transmission torque whose lubricated by high viscosity base oil grease is significant larger than the lower one. High viscosity grease is not easy to carry out the friction heat generated at ball and raceway contact area due to the bad flowing properties. It also has more serious wear occurred at contact area and high friction force, whose causes the large variance of transmission torque.


Sign in / Sign up

Export Citation Format

Share Document