Optimal stochastic compensator for time-delayed active structural control systems subjected to random excitations

2021 ◽  
Vol 515 ◽  
pp. 116507
Author(s):  
Yongbo Peng ◽  
Zhenkai Zhang ◽  
Peifang Sun
2008 ◽  
Vol 56 ◽  
pp. 182-187
Author(s):  
Antonio Occhiuzzi

Control algorithms for semi-active structural control system found in the scientific literature often rely on the choice of several parameters included in the control law. The present paper shows the preliminary conclusions of a study aiming to explain the weak dependency of the response reduction associated to semi-active control systems on the particular choice of the control algorithm adopted, provided that the relevant parameters of any control law be properly tuned.


1997 ◽  
Vol 29 (1-2) ◽  
pp. 99-122 ◽  
Author(s):  
Wael M. Elseaidy ◽  
Rance Cleaveland ◽  
John W. Baugh

2020 ◽  
Vol 15 (3) ◽  
pp. 37-48
Author(s):  
Zubair Rashid Wani ◽  
Manzoor Ahmad Tantray

The present research work is a part of a project was a semi-active structural control technique using magneto-rheological damper has to be performed. Magneto-rheological dampers are an innovative class of semi-active devices that mesh well with the demands and constraints of seismic applications; this includes having very low power requirements and adaptability. A small stroke magneto-rheological damper was mathematically simulated and experimentally tested. The damper was subjected to periodic excitations of different amplitudes and frequencies at varying voltage. The damper was mathematically modeled using parametric Modified Bouc-Wen model of magneto-rheological damper in MATLAB/SIMULINK and the parameters of the model were set as per the prototype available. The variation of mechanical properties of magneto-rheological damper like damping coefficient and damping force with a change in amplitude, frequency and voltage were experimentally verified on INSTRON 8800 testing machine. It was observed that damping force produced by the damper depended on the frequency as well, in addition to the input voltage and amplitude of the excitation. While the damping coefficient (c) is independent of the frequency of excitation it varies with the amplitude of excitation and input voltage. The variation of the damping coefficient with amplitude and input voltage is linear and quadratic respectively. More ever the mathematical model simulated in MATLAB was in agreement with the experimental results obtained.


2003 ◽  
Vol 22 (2) ◽  
pp. 97-108 ◽  
Author(s):  
Yan Sheng ◽  
Chao Wang ◽  
Ying Pan ◽  
Xinhua Zhang

This paper presents a new active structural control design methodology comparing the conventional linear-quadratic-Gaussian synthesis with a loop-transfer-recovery (LQG/LTR) control approach for structures subjected to ground excitations. It results in an open-loop stable controller. Also the closed-loop stability can be guaranteed. More importantly, the value of the controller's gain required for a given degree of LTR is orders of magnitude less than what is required in the conventional LQG/LTR approach. Additionally, for the same value of gain, the proposed controller achieves a much better degree of recovery than the LQG/LTR-based controller. Once this controller is obtained, the problems of control force saturation are either eliminated or at least dampened, and the controller band-width is reduced and consequently the control signal to noise ratio at the input point of the dynamic system is increased. Finally, numerical examples illustrate the above advantages.


2016 ◽  
Vol 24 (6) ◽  
pp. 1051-1064 ◽  
Author(s):  
Mehdi Soleymani ◽  
Amir Hossein Abolmasoumi ◽  
Hasanali Bahrami ◽  
Arash Khalatbari-S ◽  
Elham Khoshbin ◽  
...  

Model uncertainties and actuator delays are two factors that degrade the performance of active structural control systems. A new robust control system is proposed for control of an active tuned mass damper (AMD) in a high-rise building. The controller comprises a two-loop sliding model controller in conjunction with a dynamic state predictor. The sliding model controller is responsible for model uncertainties and the state predictor compensates for the time delays due to actuator dynamics and process delay. A reduced model that is validated against experimental data was constructed and equipped with an electro-mechanical AMD system mounted on the top storey. The proposed controller was implemented in the test structure and its performance under seismic disturbances was simulated using a seismic shake table. Moreover, robustness of the proposed controller was examined via variation of the test structure parameters. The shake table test results reveal the effectiveness of the proposed controller at tackling the simulated disturbances in the presence of model uncertainties and input delay.


2004 ◽  
Vol 269 (1-2) ◽  
pp. 197-211 ◽  
Author(s):  
Jeffrey L. Dohner ◽  
James P. Lauffer ◽  
Terry D. Hinnerichs ◽  
Natarajan Shankar ◽  
Mark Regelbrugge ◽  
...  

1994 ◽  
Author(s):  
Stephen D. O'Regan ◽  
J. Miesner ◽  
R. Aiken ◽  
A. Packman ◽  
Erdal A. Unver ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document