Fusion leads to effective segregation of damage during cell division: An analytical treatment

2015 ◽  
Vol 378 ◽  
pp. 47-55 ◽  
Author(s):  
Steven J. Lade ◽  
Miguel Coelho ◽  
Iva M. Tolić ◽  
Thilo Gross
Author(s):  
L. M. Lewis

The effects of colchicine on extranuclear microtubules associated with the macronucleus of Paramecium bursaria were studied to determine the possible role that these microtubules play in controlling the shape of the macronucleus. In the course of this study, the ultrastructure of the nuclear events of binary fission in control cells was also studied.During interphase in control cells, the micronucleus contains randomly distributed clumps of condensed chromatin and microtubular fragments. Throughout mitosis the nuclear envelope remains intact. During micronuclear prophase, cup-shaped microfilamentous structures appear that are filled with condensing chromatin. Microtubules are also present and are parallel to the division axis.


Author(s):  
Krishan Awtar

Exposure of cells to low sublethal but mitosis-arresting doses of vinblastine sulfate (Velban) results in the initial arrest of cells in mitosis followed by their subsequent return to an “interphase“-like stage. A large number of these cells reform their nuclear membranes and form large multimicronucleated cells, some containing as many as 25 or more micronuclei (1). Formation of large multinucleate cells is also caused by cytochalasin, by causing the fusion of daughter cells at the end of an otherwise .normal cell division (2). By the repetition of this process through subsequent cell divisions, large cells with 6 or more nuclei are formed.


Author(s):  
Ann Cleary

Microinjection of fluorescent probes into living plant cells reveals new aspects of cell structure and function. Microtubules and actin filaments are dynamic components of the cytoskeleton and are involved in cell growth, division and intracellular transport. To date, cytoskeletal probes used in microinjection studies have included rhodamine-phalloidin for labelling actin filaments and fluorescently labelled animal tubulin for incorporation into microtubules. From a recent study of Tradescantia stamen hair cells it appears that actin may have a role in defining the plane of cell division. Unlike microtubules, actin is present in the cell cortex and delimits the division site throughout mitosis. Herein, I shall describe actin, its arrangement and putative role in cell plate placement, in another material, living cells of Tradescantia leaf epidermis.The epidermis is peeled from the abaxial surface of young leaves usually without disruption to cytoplasmic streaming or cell division. The peel is stuck to the base of a well slide using 0.1% polyethylenimine and bathed in a solution of 1% mannitol +/− 1 mM probenecid.


Author(s):  
Vladimir Popenko ◽  
Natalya Cherny ◽  
Maria Yakovleva

Highly polyploid somatic nucleus (macronucleus) of ciliate Bursaria truncatella under goes severe changes in morphology during cell division. At first, macronucleus (Ma) condences, diminishes in size and turns perpendicular to longitudinal axis of the cell. After short time, Ma turns again, elongates and only afterwards the process of division itself occurs. The biological meaning of these phenomena is not clear.Localization of RNA in the cells was performed on sections of ciliates B. truncatella, embedded in “Lowicryl K4M” at various stages: (1) before cell division (Figs. 2,3); (11) at the stage of macronucleus condensation; (111) during elongation of Ma (Fig.4); (1111) in young cells (0-5min. after division). For cytochemical labelling we used RNaseAcolloidal gold complexes (RNase-Au), which are known to bind to RNA containing cell ularstructures with high specificity. The influence of different parameters on the reliability and reproducibility of labelling was studied. In addition to the factors, discussed elsewhere, we found that the balance of mono- and bivalent cations is of great significance.


Author(s):  
D.E. Jesson ◽  
S. J. Pennycook

It is well known that conventional atomic resolution electron microscopy is a coherent imaging process best interpreted in reciprocal space using contrast transfer function theory. This is because the equivalent real space interpretation involving a convolution between the exit face wave function and the instrumental response is difficult to visualize. Furthermore, the crystal wave function is not simply related to the projected crystal potential, except under a very restrictive set of experimental conditions, making image simulation an essential part of image interpretation. In this paper we present a different conceptual approach to the atomic imaging of crystals based on incoherent imaging theory. Using a real-space analysis of electron scattering to a high-angle annular detector, it is shown how the STEM imaging process can be partitioned into components parallel and perpendicular to the relevant low index zone-axis.It has become customary to describe STEM imaging using the analytical treatment developed by Cowley. However, the convenient assumption of a phase object (which neglects the curvature of the Ewald sphere) fails rapidly for large scattering angles, even in very thin crystals. Thus, to avoid unpredictive numerical solutions, it would seem more appropriate to apply pseudo-kinematic theory to the treatment of the weak high angle signal. Diffraction to medium order zero-layer reflections is most important compared with thermal diffuse scattering in very thin crystals (<5nm). The electron wave function ψ(R,z) at a depth z and transverse coordinate R due to a phase aberrated surface probe function P(R-RO) located at RO is then well described by the channeling approximation;


2020 ◽  
Vol 64 (2) ◽  
pp. 223-232 ◽  
Author(s):  
Ben L. Carty ◽  
Elaine M. Dunleavy

Abstract Asymmetric cell division (ACD) produces daughter cells with separate distinct cell fates and is critical for the development and regulation of multicellular organisms. Epigenetic mechanisms are key players in cell fate determination. Centromeres, epigenetically specified loci defined by the presence of the histone H3-variant, centromere protein A (CENP-A), are essential for chromosome segregation at cell division. ACDs in stem cells and in oocyte meiosis have been proposed to be reliant on centromere integrity for the regulation of the non-random segregation of chromosomes. It has recently been shown that CENP-A is asymmetrically distributed between the centromeres of sister chromatids in male and female Drosophila germline stem cells (GSCs), with more CENP-A on sister chromatids to be segregated to the GSC. This imbalance in centromere strength correlates with the temporal and asymmetric assembly of the mitotic spindle and potentially orientates the cell to allow for biased sister chromatid retention in stem cells. In this essay, we discuss the recent evidence for asymmetric sister centromeres in stem cells. Thereafter, we discuss mechanistic avenues to establish this sister centromere asymmetry and how it ultimately might influence cell fate.


2001 ◽  
Vol 120 (5) ◽  
pp. A501-A501
Author(s):  
U HAUGWITZ ◽  
M WIEDMANN ◽  
K SPIESBACH ◽  
K ENGELAND ◽  
J MOSSNER

1996 ◽  
Vol 15 (2) ◽  
pp. 97-112
Author(s):  
O. Shaul ◽  
M. Van Montagu ◽  
D. Inze
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document