scholarly journals Demographic and Clinical Donor Characteristics as Predictors of Total Nucleated Cell Concentrations in Harvested Marrow Products

Author(s):  
Brennan Parmelee Streck ◽  
Georges Naufal ◽  
George Carrum ◽  
LaQuisa Hill ◽  
Helen E. Heslop ◽  
...  
Author(s):  
Jeffrey P. Chang ◽  
Jaang J. Wang

Flat embeddment of certain specimens for electron microscopy is necessary for three classes of biological materials: namely monolayer cells, tissue sections of paraffin or plastics, as well as cell concentrations, exfoliated cells, and cell smears. The present report concerns a flat-embedding technique which can be applied to all these three classes of materials and which is a modified and improved version of Chang's original methodology.Preparation of coverglasses and microslides. Chemically cleaned coverglasses, 11 × 22 mm or other sizes, are laid in rows on black paper. Ink-mark one coner for identifying the spray-side of the glass for growing cells. Lightly spray with Teflon monomer (Heddy/Contact Inductries, Paterson, NO 07524, U.S.A.) from a pressurized can. Bake the sprayed glasses at 500°F for 45 min on Cover-Glass Ceramic Racks (A. Thomas Co. Philadelphia), for Teflon to polymerize.Monolayer Cells. After sterilization, the Teflon-treated coverglasses, with cells attached, are treated or fixed in situ in Columbia staining dishes (A. Thomas Co., Philadelphia) for subsequent processing.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 981
Author(s):  
Mason D. Hart ◽  
John J. Meyers ◽  
Zachary A. Wood ◽  
Toshinori Nakakita ◽  
Jason C. Applegate ◽  
...  

Isocyanoazulenes (CNAz) constitute a relatively new class of isocyanoarenes that offers rich structural and electronic diversification of the organic isocyanide ligand platform. This article considers a series of 2-isocyano-1,3-X2-azulene ligands (X = H, Me, CO2Et, Br, and CN) and the corresponding zero-valent complexes thereof, [(OC)5Cr(2-isocyano-1,3-X2-azulene)]. Air- and thermally stable, X-ray structurally characterized 2-isocyano-1,3-dimethylazulene may be viewed as a non-benzenoid aromatic congener of 2,6-dimethyphenyl isocyanide (2,6-xylyl isocyanide), a longtime “workhorse” aryl isocyanide ligand in coordination chemistry. Single crystal X-ray crystallographic {Cr–CNAz bond distances}, cyclic voltametric {E1/2(Cr0/1+)}, 13C NMR {δ(13CN), δ(13CO)}, UV-vis {dπ(Cr) → pπ*(CNAz) Metal-to-Ligand Charge Transfer}, and FTIR {νN≡C, νC≡O, kC≡O} analyses of the [(OC)5Cr(2-isocyano-1,3-X2-azulene)] complexes provided a multifaceted, quantitative assessment of the π-acceptor/σ-donor characteristics of the above five 2-isocyanoazulenes. In particular, the following inverse linear relationships were documented: δ(13COtrans) vs. δ(13CN), δ(13COcis) vs. δ(13CN), and δ(13COtrans) vs. kC≡O,trans force constant. Remarkably, the net electron withdrawing capability of the 2-isocyano-1,3-dicyanoazulene ligand rivals those of perfluorinated isocyanides CNC6F5 and CNC2F3.


1948 ◽  
Vol 175 (1) ◽  
pp. 101-105 ◽  
Author(s):  
Halvor N. Christensen ◽  
Joan T. Rothwell ◽  
Robert A. Sears ◽  
Jean A. Streicher

2017 ◽  
Vol 262 ◽  
pp. 185-188 ◽  
Author(s):  
Alison Cox ◽  
Christopher G. Bryan

Previous agglomerate-scale heap bioleaching studies have outlined the variations in cell numbers of the liquid and attached phases during colonisation of sterilised ore by a pure culture. In this study, a mixed mesophilic culture was used in agglomerate-scale columns containing non-sterilised low-grade copper ore. Over a six - month period, columns were harvested at various intervals to provide snapshots of the metal distribution and the quantity, location, and ecological variations of mineral-oxidizing microbes within the ore bed. The initial colonisation period in this experiment was dissimilar to previous work, as the indigenous community was retained within the ore-bed throughout acid agglomeration. The overall colonisation phase lasted for approximately 1,000 hours until cell concentrations stabilised. In each column, less than 0.05% of the total cells were found in the leachate, 15-20% in the interstitial phase and the remaining ~80% were attached to the mineral surface. Once cell numbers had stabilised, interstitial cell concentrations were approximately 2,000× greater than those in the leachate. This difference persisted for the duration of the experiment. Copper concentrations in the two liquid phases generally decreased over time, but were on average 50× higher in the interstitial phase. Iron concentrations were more stable, but again were 30× higher in the interstitial phase. This demonstrates that that the difference in cell concentration between the leachate and interstitial phases cannot be explained through diffusion gradients within the system as it is much greater than those observed for the dissolved metals. It also shows that the specific environmental conditions of the interstitial and attached cells are very different to those inferred through analysis of leachates alone.


Sign in / Sign up

Export Citation Format

Share Document