scholarly journals The uneven geography of US air traffic delays: Quantifying the impact of connecting passengers on delay propagation

2022 ◽  
Vol 98 ◽  
pp. 103260
Author(s):  
Athina Sismanidou ◽  
Joan Tarradellas ◽  
Pere Suau-Sanchez
Author(s):  
Paweł Zagrajek ◽  
Adam Hoszman

Ground handling services constitute an important element of airline operations and significantly affect traffic stability and punctuality. In this article, the existing and potential impact of airline handling on air traffic volatility is reviewed from the point of view of airlines and ground operations. The issues of airline expectations towards ground handling agents (including handling rates, turnaround time, passenger services, and ramp services) are explored. In addition, the impact of an airline’s schedule and the volatility of its operations on the performance and operational requirements of handling agents is discussed, including actions required by handling agents in response to the above challenges. The mechanism of how the volatility of an airline’s schedule and its operations may impact the volatility of ground operations (directly and indirectly) is considered. The statistics of airline delays caused by ground operations are presented and discussed. The issue of the correctness of air traffic delays reporting by airlines is investigated.Furthermore, this article investigates internal factors of ground handling agents and their impact on air traffic volatility. The existing and potential considerations discussed include staff management issues (in particular, employee rotation resulting in staff shortages and service quality, including punctuality), resources management, the ground service support equipment (including new developments aiming at limiting ground safety incidents), and their impact on performance.


2013 ◽  
Author(s):  
Angela Schmitt ◽  
Ruzica Vujasinovic ◽  
Christiane Edinger ◽  
Julia Zillies ◽  
Vilmar Mollwitz

Author(s):  
Kim-Phuong L. Vu ◽  
Jonathan VanLuven ◽  
Timothy Diep ◽  
Vernol Battiste ◽  
Summer Brandt ◽  
...  

A human-in-the-loop simulation was conducted to evaluate the impact of Unmanned Aircraft Systems (UAS) with low size, weight, and power (SWaP) sensors operating in a busy, low-altitude sector. Use of low SWaP sensors allow for UAS to perform detect-and-avoid (DAA) maneuvers against non-transponding traffic in the sector. Depending upon the detection range of the low SWaP sensor, the UAS pilot may or may not have time to coordinate with air traffic controllers (ATCos) prior to performing the DAA maneuver. ATCo’s sector performance and subjective ratings of acceptability were obtained in four conditions that varied in UAS-ATCo coordination (all or none) prior to the DAA maneuver and workload (higher or lower). For performance, ATCos committed more losses of separation in high than low workload conditions. They also had to make more flight plan changes to manage the UAS when the UAS pilot did not coordinate DAA maneuvers compared to when they did coordinate the maneuvers prior to execution. Although the ATCos found the DAA procedures used by the UAS in the study to be acceptable, most preferred the UAS pilot to coordinate their DAA maneuvers with ATCos prior to executing them.


Author(s):  
Volodymyr Bilotkach ◽  
Johann Caro-Burnett ◽  
Ghulam Dastgir Khan ◽  
Benny Lala Sembiring ◽  
Yuichiro Yoshida

2007 ◽  
Vol 7 (12) ◽  
pp. 3153-3162 ◽  
Author(s):  
N. Stuber ◽  
P. Forster

Abstract. We combined high resolution aircraft flight data from the EU Fifth Framework Programme project AERO2k with analysis data from the ECMWF's integrated forecast system to calculate diurnally resolved 3-D contrail cover. We scaled the contrail cover in order to match observational data for the Bakan area (eastern-Atlantic/western-Europe). We found that less than 40% of the global distance travelled by aircraft is due to flights during local night time. Yet, due to the cancellation of shortwave and longwave effects during daytime, night time flights contribute a disproportional 60% to the global annual mean forcing. Under clear sky conditions the night flights contribute even more disproportionally at 76%. There are pronounced regional variations in night flying and the associated radiative forcing. Over parts of the North Atlantic flight corridor 75% of air traffic and 84% of the forcing occurs during local night, whereas only 35% of flights are during local night in South-East Asia, yet these contribute 68% of the radiative forcing. In general, regions with a significant local contrail radiative forcing are also regions for which night time flights amount to less than half of the daily total of flights. Therefore, neglecting diurnal variations in air traffic/contrail cover by assuming a diurnal mean contrail cover can over-estimate the global mean radiative forcing by up to 30%.


Author(s):  
Javier A Pérez-Castán ◽  
Fernando Gómez Comendador ◽  
Álvaro Rodríguez-Sanz ◽  
Rocío Barragán ◽  
Rosa M Arnaldo-Valdés

Continuous climb operation is an operational concept that allows airlines to perform an optimal departing trajectory avoiding air traffic control segregation requirements. This concept implies the design and integration of air traffic flows for the sake of safety performance. This paper designs a new conflict-detection air traffic control tool based on the blocking-area concept, characterises the conflict probability between air traffic flows and assesses the impact of continuous climb operation integration in a terminal manoeuvring area. In this paper, a conflict is set out by the infringement of vertical and longitudinal separation minima and coincides with the probability of air traffic control tool usage. Moreover, this research discusses two different approaches for the conflict-detection air traffic control tool: a static approach considering nominal continuous climb operations and landing trajectories, and a dynamic approach that assesses 105 continuous climb operations and landing trajectories. Finally, the air traffic control tool is implemented using Palma TMA data and proves that out of 11 intersections (between departing and landing routes), solely 4 generate vertical separation infringements. The conflict probability between continuous climb operations and arrivals is less than 10−5. Except for one intersection, that is roughly 10−2, similar to current air traffic control intervention designed levels. Therefore, results conclude the viability of the conflict-detection air traffic control tool and continuous climb operations integration.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Gianluca Borghini ◽  
Gianluca Di Flumeri ◽  
Pietro Aricò ◽  
Nicolina Sciaraffa ◽  
Stefano Bonelli ◽  
...  

2009 ◽  
Vol 62 (4) ◽  
pp. 555-570 ◽  
Author(s):  
Peter Brooker

It is now widely recognised that a paradigm shift in air traffic control concepts is needed. This requires state-of-the-art innovative technologies, making much better use of the information in the air traffic management (ATM) system. These paradigm shifts go under the names of NextGen in the USA and SESAR in Europe, which inter alia will make dramatic changes to the nature of airport operations. A vital part of moving from an existing system to a new paradigm is the operational implications of the transition process. There would be business incentives for early aircraft fitment, it is generally safer to introduce new technologies gradually, and researchers are already proposing potential transition steps to the new system. Simple queuing theory models are used to establish rough quantitative estimates of the impact of the transition to a more efficient time-based – four-dimensional (4D) – navigational and ATM system. Such models are approximate, but they do offer insight into the broad implications of system change and its significant features. 4D-equipped aircraft in essence have a contract with the airport runway – they would be required to turn up at a very precise time – and, in return, they would get priority over any other aircraft waiting for use of the runway. The main operational feature examined here is the queuing delays affecting non-4D-equipped arrivals. These get a reasonable service if the proportion of 4D-equipped aircraft is low, but this can deteriorate markedly for high proportions, and be economically unviable. Preventative measures would be to limit the additional growth of 4D-equipped flights and/or to modify their contracts to provide sufficient space for the non-4D-equipped flights to operate without excessive delays. There is a potential for non-Poisson models, for which there is little in the literature, and for more complex models, e.g. grouping a succession of 4D-equipped aircraft as a batch.


Sign in / Sign up

Export Citation Format

Share Document