PD41-01 IMPROVED SURGICAL OUTCOMES AFTER PREOPERATIVE REHEARSAL USING 3D PRINTED PATIENT SPECIFIC SIMULATION FOR PERCUTANEOUS NEPHROLITHOTOMY (PCNL)

2017 ◽  
Vol 197 (4S) ◽  
Author(s):  
Jonathan Stone ◽  
Rebecca Bonamico ◽  
Erdal Erturk ◽  
Ahmed Ghazi
2020 ◽  
Vol 5 (4) ◽  
pp. 2473011420S0008
Author(s):  
Bijan Abar ◽  
Nicholas B. Allen ◽  
Ken Gall ◽  
Samuel B. Adams

Category Ankle; Trauma Introduction/Purpose: Critical Sized Defects (CSD) defined as bone loss greater than 1-2 cm in length or greater than 50% loss in circumference of bone remains a significant challenge in orthopaedic surgery. Patients can acquire these defects through trauma, nonunion post fracture, tumor removal, avascular necrosis, and congenital abnormalities. Custom 3D printed porous Titanium scaffolds are increasingly being used to treat CSD in Foot and Ankle Surgery. Implantation of 3D printed cages is considered a salvage procedure offered after the patient has failed other procedures. Implants fill the space of the defect, provide mechanical strength and provide opportunity for osseous integration. As implementation of this surgical technique is relatively new, further research is needed to assess surgical outcomes and inform future surgical decision making. Methods: This is a retrospective chart review study which examines surgical outcomes after using 3D printed Titanium cages. Patients who received a 3D printed Titanium cage between 1/1/2013 and 11/01/2018 with at least 1 year follow-up were included in this study. Primary outcome is device failure defined as removal of implant for any reason. If applicable, mechanism of failure was recorded for each case. Patient specific factors such as age, gender, race, BMI, diabetes status, Charlson Comorbidity Index, tobacco use, number of foot and ankle surgeries, prior limb infections and laterality of defect were recorded in addition to surgical variables including geometry of implant, duration of surgery, and perioperative antibiotics Results: 18 patients who received custom 3D printed Titanium cages were included in this study. Of the 18 patients, 5 patients (27.8%) had device failure, defined as removal of implant. Of the 5 failures, 2 were removed due to infection while the other 3 were removed due to hardware failure including fractured cage, broken screw and loose fixation. Conclusion: Custom 3D printed Titanium was successfully implemented in 72.2% of patients. Implants were only removed due to infection (2 patients) or mechanical failure of device (3 patients). Future studies need to be powered to determine if certain patient specific factors are associated with device failure. Data from this study and subsequent studies can be used to design better implants, decide who is a good surgical candidate, and create preoperative therapies to improve modifiable risk factors


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1021
Author(s):  
Bernhard Dorweiler ◽  
Pia Elisabeth Baqué ◽  
Rayan Chaban ◽  
Ahmed Ghazy ◽  
Oroa Salem

As comparative data on the precision of 3D-printed anatomical models are sparse, the aim of this study was to evaluate the accuracy of 3D-printed models of vascular anatomy generated by two commonly used printing technologies. Thirty-five 3D models of large (aortic, wall thickness of 2 mm, n = 30) and small (coronary, wall thickness of 1.25 mm, n = 5) vessels printed with fused deposition modeling (FDM) (rigid, n = 20) and PolyJet (flexible, n = 15) technology were subjected to high-resolution CT scans. From the resulting DICOM (Digital Imaging and Communications in Medicine) dataset, an STL file was generated and wall thickness as well as surface congruency were compared with the original STL file using dedicated 3D engineering software. The mean wall thickness for the large-scale aortic models was 2.11 µm (+5%), and 1.26 µm (+0.8%) for the coronary models, resulting in an overall mean wall thickness of +5% for all 35 3D models when compared to the original STL file. The mean surface deviation was found to be +120 µm for all models, with +100 µm for the aortic and +180 µm for the coronary 3D models, respectively. Both printing technologies were found to conform with the currently set standards of accuracy (<1 mm), demonstrating that accurate 3D models of large and small vessel anatomy can be generated by both FDM and PolyJet printing technology using rigid and flexible polymers.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1910
Author(s):  
Hun-Jin Jeong ◽  
Se-Won Lee ◽  
Myoung Wha Hong ◽  
Young Yul Kim ◽  
Kyoung Duck Seo ◽  
...  

The meniscus has poor intrinsic regenerative capability, and its injury inevitably leads to articular cartilage degeneration. Although there are commercialized off-the-shelf alternatives to achieve total meniscus regeneration, each has its own shortcomings such as individualized size matching issues and inappropriate mechanical properties. We manufactured a polycaprolactone-based patient-specific designed framework via a Computed Tomography scan images and 3D-printing technique. Then, we completed the hybrid-scaffold by combining the 3D-printed framework and mixture micro-size composite which consists of polycaprolactone and sodium chloride to create a cell-friendly microenvironment. Based on this hybrid-scaffold with an autograft cell source (fibrochondrocyte), we assessed mechanical and histological results using the rabbit total meniscectomy model. At postoperative 12-week, hybrid-scaffold achieved neo-meniscus tissue formation, and its shape was maintained without rupture or break away from the knee joint. Histological and immunohistochemical analysis results showed obvious ingrowth of the fibroblast-like cells and chondrocyte cells as well as mature lacunae that were embedded in the extracellular matrix. Hybrid-scaffolding resulted in superior shape matching as compared to original meniscus tissue. Histological analysis showed evidence of extensive neo-meniscus cell ingrowth. Additionally, the hybrid-scaffold did not induce osteoarthritis on the femoral condyle surface. The 3D-printed hybrid-scaffold may provide a promising approach that can be applied to those who received total meniscal resection, using patient-specific design and autogenous cell source.


2021 ◽  
pp. 155633162199633
Author(s):  
Mehran Ashouri-Sanjani ◽  
Shima Mohammadi-Moghadam ◽  
Parisa Azimi ◽  
Navid Arjmand

Background: Pedicle screw (PS) placement has been widely used in fusion surgeries on the thoracic spine. Achieving cost-effective yet accurate placements through nonradiation techniques remains challenging. Questions/Purposes: Novel noncovering lock-mechanism bilateral vertebra-specific drill guides for PS placement were designed/fabricated, and their accuracy for both nondeformed and deformed thoracic spines was tested. Methods: One nondeformed and 1 severe scoliosis human thoracic spine underwent computed tomographic (CT) scanning, and 2 identical proportions of each were 3-dimensional (3D) printed. Pedicle-specific optimal (no perforation) drilling trajectories were determined on the CT images based on the entry point/orientation/diameter/length of each PS. Vertebra-specific templates were designed and 3D printed, assuring minimal yet firm contacts with the vertebrae through a noncovering lock mechanism. One model of each patient was drilled using the freehand and one using the template guides (96 pedicle drillings). Postoperative CT scans from the models with the inserted PSs were obtained and superimposed on the preoperative planned models to evaluate deviations of the PSs. Results: All templates fitted their corresponding vertebra during the simulated operations. As compared with the freehand approach, PS placement deviations from their preplanned positions were significantly reduced: for the nonscoliosis model, from 2.4 to 0.9 mm for the entry point, 5.0° to 3.3° for the transverse plane angle, 7.1° to 2.2° for the sagittal plane angle, and 8.5° to 4.1° for the 3D angle, improving the success rate from 71.7% to 93.5%. Conclusions: These guides are valuable, as the accurate PS trajectory could be customized preoperatively to match the patients’ unique anatomy. In vivo studies will be required to validate this approach.


2021 ◽  
Author(s):  
Mariya S. Pravdivtseva ◽  
Eva Peschke ◽  
Thomas Lindner ◽  
Fritz Wodarg ◽  
Johannes Hensler ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. M. Zamarayeva ◽  
K. Gopalan ◽  
J. R. Corea ◽  
M. Z. Liu ◽  
K. Pang ◽  
...  

AbstractWe have developed a process for fabricating patient specific Magnetic Resonance Imaging (MRI) Radio-frequency (RF) receive coil arrays using additive manufacturing. Our process involves spray deposition of silver nanoparticle inks and dielectric materials onto 3D printed substrates to form high-quality resonant circuits. In this paper, we describe the material selection and characterization, process optimization, and design and testing of a prototype 4-channel neck array for carotid imaging. We show that sprayed polystyrene can form a low loss dielectric layer in a parallel plate capacitor. We also demonstrate that by using sprayed silver nanoparticle ink as conductive traces, our devices are still dominated by sample noise, rather than material losses. These results are critical for maintaining high Signal-to-Noise-Ratio (SNR) in clinical settings. Finally, our prototype patient specific coil array exhibits higher SNR (5 × in the periphery, 1.4 × in the center) than a commercially available array designed to fit the majority of subjects when tested on our custom neck phantom. 3D printed substrates ensure an optimum fit to complex body parts, improve diagnostic image quality, and enable reproducible placement on subjects.


Author(s):  
Andrew Kanawati ◽  
Renan Jose Rodrigues Fernandes ◽  
Aaron Gee ◽  
Jennifer Urquhart ◽  
Fawaz Siddiqi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document