Production of a polyclonal antiserum against recombinant nucleocapsid protein and its application for the detection of fig mosaic virus

2019 ◽  
Vol 265 ◽  
pp. 22-25 ◽  
Author(s):  
Morteza Shahmirzaie ◽  
Mohammad Reza Safarnejad ◽  
Farshad Rakhshandehroo ◽  
Hossein Safarpour ◽  
Hodjattallah Rabbani ◽  
...  
2014 ◽  
Vol 89 (1) ◽  
pp. 480-491 ◽  
Author(s):  
Kazuya Ishikawa ◽  
Chihiro Miura ◽  
Kensaku Maejima ◽  
Ken Komatsu ◽  
Masayoshi Hashimoto ◽  
...  

ABSTRACTAlthough many studies have demonstrated intracellular movement of viral proteins or viral replication complexes, little is known about the mechanisms of their motility. In this study, we analyzed the localization and motility of the nucleocapsid protein (NP) ofFig mosaic virus(FMV), a negative-strand RNA virus belonging to the recently established genusEmaravirus. Electron microscopy of FMV-infected cells using immunogold labeling showed that NPs formed cytoplasmic agglomerates that were predominantly enveloped by the endoplasmic reticulum (ER) membrane, while nonenveloped NP agglomerates also localized along the ER. Likewise, transiently expressed NPs formed agglomerates, designated NP bodies (NBs), in close proximity to the ER, as was the case in FMV-infected cells. Subcellular fractionation and electron microscopic analyses of NP-expressing cells revealed that NBs localized in the cytoplasm. Furthermore, we found that NBs moved rapidly with the streaming of the ER in an actomyosin-dependent manner. Brefeldin A treatment at a high concentration to disturb the ER network configuration induced aberrant accumulation of NBs in the perinuclear region, indicating that the ER network configuration is related to NB localization. Dominant negative inhibition of the class XI myosins, XI-1, XI-2, and XI-K, affected both ER streaming and NB movement in a similar pattern. Taken together, these results showed that NBs localize in the cytoplasm but in close proximity to the ER membrane to form enveloped particles and that this causes passive movements of cytoplasmic NBs by ER streaming.IMPORTANCEIntracellular trafficking is a primary and essential step for the cell-to-cell movement of viruses. To date, many studies have demonstrated the rapid intracellular movement of viral factors but have failed to provide evidence for the mechanism or biological significance of this motility. Here, we observed that agglomerates of nucleocapsid protein (NP) moved rapidly throughout the cell, and we performed live imaging and ultrastructural analysis to identify the mechanism of motility. We provide evidence that cytoplasmic protein agglomerates were passively dragged by actomyosin-mediated streaming of the endoplasmic reticulum (ER) in plant cells. In virus-infected cells, NP agglomerates were surrounded by the ER membranes, indicating that NP agglomerates form the basis of enveloped virus particles in close proximity to the ER. Our work provides a sophisticated model of macromolecular trafficking in plant cells and improves our understanding of the formation of enveloped particles of negative-strand RNA viruses.


2021 ◽  
Vol 790 (1) ◽  
pp. 012058
Author(s):  
Shrooq Zagier ◽  
Fadhal Al Fadhal ◽  
Osamah Alisawi

Virology ◽  
2021 ◽  
Vol 557 ◽  
pp. 15-22
Author(s):  
Teodora Djukic ◽  
Maja Mladenovic ◽  
Dragana Stanic-Vucinic ◽  
Jelena Radosavljevic ◽  
Katarina Smiljanic ◽  
...  

2005 ◽  
Vol 125 (2) ◽  
pp. 181-186 ◽  
Author(s):  
Masayuki Saijo ◽  
Toshio Ogino ◽  
Fumihiro Taguchi ◽  
Shuetsu Fukushi ◽  
Tetsuya Mizutani ◽  
...  

2014 ◽  
Vol 104 (1) ◽  
pp. 108-114 ◽  
Author(s):  
Jeewan Jyot Walia ◽  
Anouk Willemsen ◽  
Eminur Elci ◽  
Kadriye Caglayan ◽  
Bryce W. Falk ◽  
...  

Fig mosaic virus (FMV) is a multipartite negative-sense RNA virus infecting fig trees worldwide. FMV is transmitted by vegetative propagation and grafting of plant materials, and by the eriophyid mite Aceria ficus. In this work, the genetic variation and evolutionary mechanisms shaping FMV populations were characterized. Nucleotide sequences from four genomic regions (each within the genomic RNAs 1, 2, 3, and 4) from FMV isolates from different countries were determined and analyzed. FMV genetic variation was low, as is seen for many other plant viruses. Phylogenetic analysis showed some geographically distant FMV isolates which clustered together, suggesting long-distance migration. The extent of migration was limited, although varied, between countries, such that FMV populations of different countries were genetically differentiated. Analysis using several recombination algorithms suggests that genomes of some FMV isolates originated by reassortment of genomic RNAs from different genetically similar isolates. Comparison between nonsynonymous and synonymous substitutions showed selection acting on some amino acids; however, most evolved neutrally. This and neutrality tests together with the limited gene flow suggest that genetic drift plays an important role in shaping FMV populations.


2018 ◽  
Vol 19 (12) ◽  
pp. 3747
Author(s):  
Matthaios Mathioudakis ◽  
Souheyla Khechmar ◽  
Carolyn Owen ◽  
Vicente Medina ◽  
Karima Ben Mansour ◽  
...  

Pepino mosaic virus (PepMV) is a mechanically-transmitted tomato pathogen of importance worldwide. Interactions between the PepMV coat protein and triple gene block protein (TGBp1) with the host heat shock cognate protein 70 and catalase 1 (CAT1), respectively, have been previously reported by our lab. In this study, a novel tomato interactor (SlTXND9) was shown to bind the PepMV TGBp1 in yeast-two-hybrid screening, in vitro pull-down and bimolecular fluorescent complementation (BiFC) assays. SlTXND9 possesses part of the conserved thioredoxin (TRX) active site sequence (W__PC vs. WCXPC), and TXND9 orthologues cluster within the TRX phylogenetic superfamily closest to phosducin-like protein-3. In PepMV-infected and healthy Nicotiana benthamiana plants, NbTXND9 mRNA levels were comparable, and expression levels remained stable in both local and systemic leaves for 10 days post inoculation (dpi), as was also the case for catalase 1 (CAT1). To localize the TXND9 in plant cells, a polyclonal antiserum was produced. Purified α-SlTXND9 immunoglobulin (IgG) consistently detected a set of three protein bands in the range of 27–35 kDa, in the 1000 and 30,000 g pellets, and the soluble fraction of extracts of healthy and PepMV-infected N. benthamiana leaves, but not in the cell wall. These bands likely consist of the homologous protein NbTXND9 and its post-translationally modified derivatives. On electron microscopy, immuno-gold labelling of ultrathin sections of PepMV-infected N. benthamiana leaves using α-SlTXND9 IgG revealed particle accumulation close to plasmodesmata, suggesting a role in virus movement. Taken together, this study highlights a novel tomato-PepMV protein interaction and provides data on its localization in planta. Currently, studies focusing on the biological function of this interaction during PepMV infection are in progress.


Sign in / Sign up

Export Citation Format

Share Document