Development of a T7 RNA polymerase expressing cell line using lentivirus vectors for the recovery of recombinant Newcastle disease virus

2021 ◽  
Vol 291 ◽  
pp. 114099
Author(s):  
Ming Yue Yeong ◽  
Pheik-Sheen Cheow ◽  
Syahril Abdullah ◽  
Adelene Ai-Lian Song ◽  
Janet Lei-Rossmann ◽  
...  
1999 ◽  
Vol 80 (11) ◽  
pp. 2987-2995 ◽  
Author(s):  
Angela Römer-Oberdörfer ◽  
Egbert Mundt ◽  
Teshome Mebatsion ◽  
Ursula J. Buchholz ◽  
Thomas C. Mettenleiter

Recombinant lentogenic Newcastle disease virus (NDV) of the vaccine strain Clone-30 was reproducibly generated after simultaneous expression of antigenome-sense NDV RNA and NDV nucleoprotein, phosphoprotein and RNA-dependent RNA polymerase from plasmids transfected into cells stably expressing T7 RNA polymerase. For this purpose, the genome of Clone-30, comprising 15186 nt, was cloned and sequenced prior to assembly into a full-length cDNA clone under control of a T7 RNA polymerase promoter. Recombinant virus was amplified by inoculation of transfection supernatant into the allantoic cavity of embryonated specific-pathogen-free (SPF) chicken eggs. Two marker restriction sites comprising a total of five nucleotide changes artificially introduced into noncoding regions were present in the progeny virus. The recombinant NDV was indistinguishable from the parental wild-type virus with respect to its growth characteristics in cell culture and in embryonated eggs. Moreover, an intracerebral pathogenicity index of 0·29 was obtained for both viruses as determined by intracerebral inoculation of day-old SPF chickens, proving that the recombinant NDV is a faithful copy of the parental vaccine strain of NDV.


1999 ◽  
Vol 73 (6) ◽  
pp. 5001-5009 ◽  
Author(s):  
Ben P. H. Peeters ◽  
Olav S. de Leeuw ◽  
Guus Koch ◽  
Arno L. J. Gielkens

ABSTRACT A full-length cDNA clone of Newcastle disease virus (NDV) vaccine strain LaSota was assembled from subgenomic overlapping cDNA fragments and cloned in a transcription plasmid between the T7 RNA polymerase promoter and the autocatalytic hepatitis delta virus ribozyme. Transfection of this plasmid into cells that were infected with a recombinant fowlpoxvirus that expressed T7 RNA polymerase, resulted in the synthesis of antigenomic NDV RNA. This RNA was replicated and transcribed by the viral NP, P, and L proteins, which were expressed from cotransfected plasmids. After inoculation of the transfection supernatant into embryonated specific-pathogen-free eggs, infectious virus derived from the cloned cDNA was recovered. By introducing three nucleotide changes in the cDNA, we generated a genetically tagged derivative of the LaSota strain in which the amino acid sequence of the protease cleavage site (GGRQGR↓L) of the fusion protein F0 was changed to the consensus cleavage site of virulent NDV strains (GRRQRR↓F). Pathogenicity tests in day-old chickens showed that the strain derived from the unmodified cDNA was completely nonvirulent (intracerebral pathogenicity index [ICPI] = 0.00). However, the strain derived from the cDNA in which the protease cleavage site was modified showed a dramatic increase in virulence (ICPI = 1.28 out of a possible maximum of 2.0). Pulse-chase labeling of cells infected with the different strains followed by radioimmunoprecipitation of the F protein showed that the efficiency of cleavage of the F0 protein was greatly enhanced by the amino acid replacements. These results demonstrate that genetically modified NDV can be recovered from cloned cDNA and confirm the supposition that cleavage of the F0 protein is a key determinant in virulence of NDV.


2010 ◽  
Vol 5 (s1) ◽  
pp. e23-e24
Author(s):  
Bernardo Lozano-Dubernard ◽  
Ernesto Soto-Priante ◽  
David Sarfati-Mizrahi ◽  
Felipa Castro-Peralta ◽  
Ricardo Flores-Castro ◽  
...  

BioTechniques ◽  
2020 ◽  
Vol 68 (2) ◽  
pp. 96-100
Author(s):  
Pheik-Sheen Cheow ◽  
Tiong Kit Tan ◽  
Adelene Ai-Lian Song ◽  
Khatijah Yusoff ◽  
Suet Lin Chia

Reverse genetics has been used to generate recombinant Newcastle disease virus with enhanced immunogenic properties for vaccine development. The system, which involves co-transfecting the viral antigenomic plasmid with three helper plasmids into a T7 RNA polymerase-expressing cell to produce viral progenies, poses a great challenge. We have modified the standard transfection method to improve the transfection efficiency of the plasmids, resulting in a higher titer of virus progeny production. Two transfection reagents (i.e., lipofectamine and polyethylenimine) were used to compare the transfection efficiency of the four plasmids. The virus progenies produced were quantitated with flow cytometry analysis of the infectious virus unit. The modified transfection method increased the titer of virus progenies compared with that of the standard transfection method.


Virus Genes ◽  
2017 ◽  
Vol 53 (3) ◽  
pp. 410-417 ◽  
Author(s):  
Madhan Mohan Chellappa ◽  
Sohini Dey ◽  
Satish Gaikwad ◽  
Dinesh C. Pathak ◽  
Vikram N. Vakharia

Sign in / Sign up

Export Citation Format

Share Document