Intrusive hyaloclastite and peperitic breccias associated to sill and cryptodome emplacement on an Early Paleocene polymagmatic compound cone-dome volcanic complex from El Guanaco mine, Northern Chile

2018 ◽  
Vol 354 ◽  
pp. 153-170 ◽  
Author(s):  
G.N. Páez ◽  
C. Permuy Vidal ◽  
M. Galina ◽  
L. López ◽  
S.M. Jovic ◽  
...  
Lithos ◽  
2019 ◽  
Vol 346-347 ◽  
pp. 105162 ◽  
Author(s):  
Osvaldo González-Maurel ◽  
Petrus le Roux ◽  
Benigno Godoy ◽  
Valentin R. Troll ◽  
Frances M. Deegan ◽  
...  

2022 ◽  
Vol 117 (1) ◽  
pp. 25-55
Author(s):  
Stephanie Lohmeier ◽  
Bernd Lehmann ◽  
Albrecht Schneider ◽  
Andrew Hodgkin ◽  
Raymond Burgess

Abstract The El Volcán gold project (8.9 Moz Au @ 0.71 g/t Au) is located in the Maricunga gold belt in northern Chile, on the flank of the large Cenozoic Copiapó Volcanic Complex. Precious metal mineralization is hosted in two zones (Dorado and Ojo de Agua) of (pervasively) altered Miocene porphyry intrusions and lava flows of andesitic to rhyolitic composition, and in breccias. The ore zones reflect an evolving magmatic-hydrothermal system with mineral assemblages of magnetite-ilmenite-pyrite-molybdenite (early), bornite-chalcopyrite-pyrite-rutile (stage I), chalcocite-chalcopyrite-enargite-fahlore-pyrite (stage II), and chalcopyrite-covellite-pyrite (stage III). Alteration is dominantly of Maricunga-style (illite-smectite-chlorite ± kaolinite), partly obscured by quartz-kaolinite-alunite ± illite ± smectite alteration. Powdery quartz-alunite-kaolinite alteration with native sulfur and cinnabar forms shallow steam-heated zones. Early K-feldspar ± biotite alteration is preserved only in small porphyry cores and in deep drill holes. Most gold is submicrometer size and is in banded quartz veinlets, which are characteristic of the Maricunga gold belt. However, some gold is disseminated in zones of pervasive quartz-kaolinite-alunite alteration, with and without banded quartz veinlets. Minor visible gold is related to disseminated chalcocite-chalcopyrite-enargite-fahlore-pyrite. The lithogeochemical database identifies a pronounced Au-Te-Re signature (>100× bulk crust) of the hydrothermal system. Molybdenum-rich bulk rock (100–400 ppm Mo) has an Re-Os age of 10.94 ± 0.17 Ma (2σ). 40Ar-39Ar ages on deep K-feldspar alteration and on alunite altered rock have the same age within error and yield a combined age of 11.20 ± 0.25 Ma (2σ). The formation of the El Volcán gold deposit took place during the establishment of the Chilean flat-slab setting in a time of increasing crustal thickness when hydrous magmas were formed in a mature arc setting. The vigorous nature of the hydrothermal system is expressed by abundant one-phase vapor fluid inclusions recording magmatic vapor streaming through a large rock column with a vertical extent of ≥1,500 m.


Geothermics ◽  
2021 ◽  
Vol 89 ◽  
pp. 101961
Author(s):  
Marco Taussi ◽  
Barbara Nisi ◽  
Orlando Vaselli ◽  
Santiago Maza ◽  
Diego Morata ◽  
...  

2004 ◽  
Vol 161 (4) ◽  
pp. 603-618 ◽  
Author(s):  
J.E. Clavero ◽  
R.S.J. Sparks ◽  
M.S. Pringle ◽  
E. Polanco ◽  
M.C. Gardeweg

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Osvaldo González-Maurel ◽  
Frances M. Deegan ◽  
Petrus le Roux ◽  
Chris Harris ◽  
Valentin R. Troll ◽  
...  

2015 ◽  
Vol 422 ◽  
pp. 75-86 ◽  
Author(s):  
Dale H. Burns ◽  
Shanaka L. de Silva ◽  
Frank Tepley ◽  
Axel K. Schmitt ◽  
Matthew W. Loewen

2021 ◽  
Author(s):  
Matías Clunes ◽  
John Browning ◽  
Carlos Marquardt ◽  
José Cembrano ◽  
Matías Villarroel ◽  
...  

<p>In the Atacama Desert, at the Precordillera of northern Chile, a series of Paleocene-Eocene caldera deposits and ring-faults are exceptionally well-preserved<sup>1</sup>. Here we aim to build on previous mapping efforts to consider the location, timing and style of pre, syn and post caldera volcanism in the region. We focus on the partially nested caldera complexes of Lomas Bayas and El Durazno<sup>2,3</sup> where deposits record several stages of caldera evolution (pre-collapse, collapse/intra-caldera and extra-caldera, resurgence and post-collapse eruptive deposits). The pre-caldera basement is a thick sequence of early Paleocene mafic lavas<sup>4, 5</sup>. The caldera complex formed between around 63 and 54 Ma<sup>4, 5</sup>. Both calderas constitute subcircular structures approximately 13 km in diameter and are cut by several NNW to NNE-trending felsic dikes which are spatially related to felsic domes interpreted as resulting from post caldera formation unrest<sup>1,</sup><sup>4</sup>. These calderas have been interpreted as part of the Carrizalillo megacaldera complex<sup>2 </sup>. We combine field observations, such as the attitude of dikes, as well as information on their dimension and composition, the size, location and composition of domes and lava flows, as well as the evidence of the regional stress field operating during the caldera evolution from measurements of fault kinematics. This data will be used as the input to finite element method models to investigate the effect of nested caldera geometry, ring-faults and crustal heterogeneities on the location of domes and eruptive centers generated during caldera unrest. The results will be potentially useful for constraining models of eruption forecasting during periods of unrest in calderas and ore deposition models which have been shown to be linked to caldera structure and magma emplacement.</p><p><strong>References</strong></p><p><sup>1 </sup>Rivera, O. and Falcón, M. (2000). Calderas tipo colapso-resurgentes del Terciario inferior en la Pre-Cordillera de la Región de Atacama: Emplazamiento de complejos volcano-plutónicos en las cuencas volcano-tectónicas extensionales Hornitos y Indio Muerto: IX Congreso Geológico Chileno, v. 2. Soc. Geol. de Chile, Puerto Varas.</p><p><sup>2 </sup>Rivera, O., and Mpodozis, C. (1994). La megacaldera Carrizalillo y sus calderas anidadas: Volcanismo sinextensional Cretácico Superior-Terciario inferior en la Precordillera de Copiapó, paper presented at VII Congreso Geológico Chileno. Acad. de Cienc. del Inst. Chilecol. de Geol. de Chile, Concepción.</p><p><sup>3 </sup>Rivera, O. (1992). El complejo volcano-plutónico Paleoceno-Eoceno del Cerro Durazno Alto: las calderas El Durazno y Lomas Bayas, Región de Atacama, Chile. Tesis Departamento de Geología, Universidad de Chile, 242. (Unpublished).</p><p><sup>4 </sup>Arévalo, C. (2005). Carta Los Loros, Región de Atacama. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, 92, 1(100.000), 53 p.</p><p><sup>5 </sup>Iriarte, S., Arévalo, C., Mpodozis, C. (1999). Mapa Geológico de la Hoja La Guardia, Región de Atacama. Servicio Nacional de Geología y Minería. Mapas Geológicos, 13, 1(100.000).</p>


Sign in / Sign up

Export Citation Format

Share Document