Disinfection of synthetic and real municipal wastewater effluent by flow-through pulsed UV-light treatment system

2016 ◽  
Vol 10 ◽  
pp. 89-97 ◽  
Author(s):  
Gulsad Uslu ◽  
Ali Demirci ◽  
John M. Regan
2020 ◽  
Vol 83 (3) ◽  
pp. 418-425 ◽  
Author(s):  
BEINING OUYANG ◽  
ALI DEMIRCI ◽  
PAUL H. PATTERSON

ABSTRACT Unpasteurized liquid egg can be contaminated with pathogenic microorganisms and may cause foodborne outbreaks. Thus, it is essential to decontaminate the liquid egg to ensure food safety. Pulsed UV light is one of the emerging technologies for food decontamination in recent years. This static treatment system has been studied previously in our laboratory. However, continuous processing using a flow-through treatment system needs to be evaluated for potential commercial applications. Therefore, in this study, a flow-through treatment system of pulsed UV light was evaluated and optimized for inactivation of Escherichia coli K12NSR for liquid egg white decontamination. Treatment factors including flow rate (40 to 80 mL/min), number of passes (one to three passes), and distance from the sample to the pulsed UV light strobe (5 to 13 cm) were optimized using response surface methodology. This methodology suggested three passes with 40 mL/min flow rate and a 5-cm distance as the optimum conditions. The model was then validated for the maximum reduction of E. coli K12NSR, which was measured as 1.57 log CFU/mL at the optimal conditions. The energy doses of the pulsed UV light and temperature changes of the liquid egg white during the treatment were measured. Furthermore, several quality parameters were assessed at the optimum treatment conditions to determine the impact of the flow-through pulsed UV processing on the quality of liquid egg white. The results showed significant differences in pH, lipid oxidation, turbidity, and color between control and pulsed UV light–treated samples (P < 0.05). However, there was no significant difference in foaming ability or foam stability between pulsed UV light–treated samples and the control. Overall, this study demonstrated the potential of flow-through pulsed UV light to decontaminate liquid egg white, but further research is needed for optimal enhancement. HIGHLIGHTS


2014 ◽  
Vol 13 (2) ◽  
pp. 406-412 ◽  
Author(s):  
Mary Garvey ◽  
Neil Rowan

The use of ultraviolet (UV) light for water disinfection has become increasingly popular due to on-going issues with drinking water and public health. Pulsed UV light has proved to be an effective form of inactivating a range of pathogens including parasite species. However, there are limited data available on the use of pulsed UV light for the disinfection of flowing water in the absence or presence of inorganic contaminants commonly found in water sources. Here, we report on the inactivation of test species including Bacillus endospores following pulsed UV treatment as a flow through system. Significant levels of inactivation were obtained for both retention times tested. The presence of inorganic contaminants iron and/or manganese did affect the rate of disinfection, predominantly resulting in an increase in the levels of inactivation at certain UV doses. The findings of this study suggest that pulsed UV light may provide a method of water disinfection as it successfully inactivated bacterial cells and bacterial endospores in the absence and presence of inorganic contaminants.


Sign in / Sign up

Export Citation Format

Share Document