Granulated apatite filters for phosphorous retention in treatment wetlands: Experience from full-scale applications

2021 ◽  
Vol 40 ◽  
pp. 101927
Author(s):  
L. Delgado-González ◽  
S. Prost-Boucle ◽  
S. Troesch ◽  
P. Molle
1997 ◽  
Vol 35 (5) ◽  
pp. 45-53 ◽  
Author(s):  
Hans B. Wittgren ◽  
Trond Mæhlum

The best prospects for successful wetland treatment should be in the warmer regions of the world, but studies in North America and Scandinavia show that wetland treatment may be feasible also in cooler regions. A review shows that the number of wetlands of different types (free water surface, FWS; horizontal and vertical subsurface flow, SSF), treating different kinds of wastewater, is steadily increasing in most parts of the cold temperate regions of the world. The major wetland engineering concerns in cold climates, which are discussed in this paper, are related to: (1) ice formation, and its implications for hydraulic performance; (2) hydrology and hydraulic issues besides ice formation; and (3) the thermal consequences for biologically or microbiologically mediated treatment processes. Energy- and water-balance calculations, as well as thermal modeling, are useful tools for successful design and operation of treatment wetlands, but the shortage of data makes it necessary to adopt a conservative approach. The treatment processes often appear less temperature sensitive in full-scale wetlands as compared to laboratory incubations. Several possible explanations are discussed in the paper: (1) sedimentation playing a significant role, (2) overdimensioning in relation to some constituents, (3) seasonal adsorption (cation exchange) of ammonium, and (4) temperature adaptation of the microbial community. Experience shows that cold climate wetlands can meet effluent criteria for the most important treatment parameters. To gain wide acceptance, however, we need to become more specific about design and construction, and also about operation, maintenance and cost-effectiveness. These goals require detailed knowledge about processes in full-scale wetlands, including long-term changes and response to maintenance.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 569
Author(s):  
Sarah A. White

Nutrient enrichment of surface waters degrades water quality. Municipalities need effective and economical solutions to remove nutrients from surface waters. From July 2016 to May 2020, full-scale (900 m2, 5% cover) floating treatment wetlands (FTWs) were deployed in Wickham Park pond, a eutrophic water body (0.13 mg/L total phosphorus (P), 0.96 mg/L total nitrogen (N)). The plants in FTWs in close proximity to a SB10000 mixer fixed N and P more efficiently. The rate of N (g/m2/year) fixed within tissues was highest for Juncus effusus (13.5), Agrostis alba (13.2), and Sagittaria lancifolia (12.1). The rate of P (g/m2/year) fixed within plant tissues was similar for all species (3.77, Agrostis alba, Canna spp., Iris hexagona, Juncus effusus, and Sagittaria lancifolia) save Pontederia cordata (2.52) volunteer species (1.41). The N and P removed with plant harvest were similar for non-mixed and mixed FTWs. Notably, the N:P ratio in plant tissues in 2017 (pre-mixer installation) was 11:1; after mixer installation (2018–2020), N:P ratios averaged 2.7:1, indicating increased P fixation within plant tissues. In 2017, 12,828 kg of plant tissues was harvested, removing 334 kg of N and 29.5 kg of P. In 2019, 32,958 kg of plant biomass was harvested from the pond, removing 425 kg of N and 138 kg of P. In 2020, 27,945 kg of biomass was harvested from FTWs, removing 267 kg of N and 95 kg of P. From 2016 to 2020, 73,000 kg of biomass was harvested, removing 1026 kg of N and 262 kg of P from Wickham Park pond. Knowing the total fresh biomass of tissues removed from FTWs at harvest is critical for accuracy in reporting nutrient removal aided by FTWs.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1188 ◽  
Author(s):  
Jaime Nivala ◽  
Clodagh Murphy ◽  
Andrew Freeman

This paper outlines recent advances in the design, application, and operations and maintenance (O&M) of aerated treatment wetland systems as well as current research trends. We provide the first-ever comprehensive estimate of the number and geographical distribution of aerated treatment wetlands worldwide and review new developments in aerated wetland design and application. This paper also presents and discusses first-hand experiences and challenges with the O&M of full-scale aerated treatment wetland systems, which is an important aspect that is currently not well reported in the literature. Knowledge gaps and suggestions for future research on aerated treatment wetlands are provided.


2000 ◽  
Vol 16 (2) ◽  
pp. 107-114 ◽  
Author(s):  
Louis M. Hsu ◽  
Judy Hayman ◽  
Judith Koch ◽  
Debbie Mandell

Summary: In the United States' normative population for the WAIS-R, differences (Ds) between persons' verbal and performance IQs (VIQs and PIQs) tend to increase with an increase in full scale IQs (FSIQs). This suggests that norm-referenced interpretations of Ds should take FSIQs into account. Two new graphs are presented to facilitate this type of interpretation. One of these graphs estimates the mean of absolute values of D (called typical D) at each FSIQ level of the US normative population. The other graph estimates the absolute value of D that is exceeded only 5% of the time (called abnormal D) at each FSIQ level of this population. A graph for the identification of conventional “statistically significant Ds” (also called “reliable Ds”) is also presented. A reliable D is defined in the context of classical true score theory as an absolute D that is unlikely (p < .05) to be exceeded by a person whose true VIQ and PIQ are equal. As conventionally defined reliable Ds do not depend on the FSIQ. The graphs of typical and abnormal Ds are based on quadratic models of the relation of sizes of Ds to FSIQs. These models are generalizations of models described in Hsu (1996) . The new graphical method of identifying Abnormal Ds is compared to the conventional Payne-Jones method of identifying these Ds. Implications of the three juxtaposed graphs for the interpretation of VIQ-PIQ differences are discussed.


1996 ◽  
Vol 12 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Louis M. Hsu

The difference (D) between a person's Verbal IQ (VIQ) and Performance IQ (PIQ) has for some time been considered clinically meaningful ( Kaufman, 1976 , 1979 ; Matarazzo, 1990 , 1991 ; Matarazzo & Herman, 1985 ; Sattler, 1982 ; Wechsler, 1984 ). Particularly useful is information about the degree to which a difference (D) between scores is “abnormal” (i.e., deviant in a standardization group) as opposed to simply “reliable” (i.e., indicative of a true score difference) ( Mittenberg, Thompson, & Schwartz, 1991 ; Silverstein, 1981 ; Payne & Jones, 1957 ). Payne and Jones (1957) proposed a formula to identify “abnormal” differences, which has been used extensively in the literature, and which has generally yielded good approximations to empirically determined “abnormal” differences ( Silverstein, 1985 ; Matarazzo & Herman, 1985 ). However applications of this formula have not taken into account the dependence (demonstrated by Kaufman, 1976 , 1979 , and Matarazzo & Herman, 1985 ) of Ds on Full Scale IQs (FSIQs). This has led to overestimation of “abnormality” of Ds of high FSIQ children, and underestimation of “abnormality” of Ds of low FSIQ children. This article presents a formula for identification of abnormal WISC-R Ds, which overcomes these problems, by explicitly taking into account the dependence of Ds on FSIQs.


Sign in / Sign up

Export Citation Format

Share Document