Asymmetric ground reaction forces and knee kinematics during squat after anterior cruciate ligament (ACL) reconstruction

The Knee ◽  
2016 ◽  
Vol 23 (5) ◽  
pp. 820-825 ◽  
Author(s):  
Brooke A. Sanford ◽  
John L. Williams ◽  
Audrey Zucker-Levin ◽  
William M. Mihalko
2008 ◽  
Vol 36 (11) ◽  
pp. 2158-2166 ◽  
Author(s):  
Thore Zantop ◽  
Mario Ferretti ◽  
Kevin M. Bell ◽  
Peter U. Brucker ◽  
Lars Gilbertson ◽  
...  

Background In anterior cruciate ligament (ACL) reconstruction using hamstring grafts, the graft can be looped, resulting in an increased graft diameter but reducing graft length within the tunnels. Hypothesis After 6 and 12 weeks, structural properties and knee kinematics after soft tissue ACL reconstruction with 15 mm within the femoral tunnel will be significantly inferior when compared with the properties of ACL reconstruction with 25 mm in the tunnel. Study Design Controlled laboratory study. Methods In an intra-articular goat model, 36 ACL reconstructions using an Achilles tendon split graft were performed with 15-mm (18 knees) and 25-mm (18 knees) graft length in the femoral tunnel. Animals were sacrificed 6 weeks and 12 weeks after surgery and knee kinematics was tested. In situ forces as well as the structural properties were determined and compared with those in an intact control group. Histologic analyses were performed in 2 animals in each group 6 and 12 weeks postoperatively. Statistical analysis was performed using a 2-factor analysis of variance test. Results Anterior cruciate ligament reconstructions with 15 mm resulted in significantly less anterior tibial translation after 6 weeks ( P < .05) but not after 12 weeks. Kinematics after 12 weeks and in situ forces of the replacement grafts at both time points showed no statistically significant differences. Stiffness, ultimate failure load, and ultimate stress revealed no statistically significant differences between the 15-mm group and the 25-mm group. Conclusion The results suggest that there is no negative correlation between short graft length (15 mm) in the femoral tunnel and the resulting knee kinematics and structural properties. Clinical Relevance Various clinical scenarios exist in which the length of available graft that could be pulled into the bone tunnel (femoral or tibial) could be in question. To address this concern, this study showed that reducing the tendon graft length in the femoral bone tunnel from 25 mm to 15 mm did not have adverse affects in a goat model.


2016 ◽  
Vol 45 (2) ◽  
pp. 347-354 ◽  
Author(s):  
Eivind Inderhaug ◽  
Joanna M. Stephen ◽  
Andy Williams ◽  
Andrew A. Amis

Background: Anterolateral soft tissue structures of the knee have a role in controlling anterolateral rotational laxity, and they may be damaged at the time of anterior cruciate ligament (ACL) ruptures. Purpose: To compare the kinematic effects of anterolateral operative procedures in combination with intra-articular ACL reconstruction for combined ACL plus anterolateral–injured knees. Study Design: Controlled laboratory study. Methods: Twelve cadaveric knees were tested in a 6 degrees of freedom rig using an optical tracking system to record the kinematics through 0° to 90° of knee flexion with no load, anterior drawer, internal rotation, and combined loading. Testing was first performed in ACL-intact, ACL-deficient, and combined ACL plus anterolateral–injured (distal deep insertions of the iliotibial band and the anterolateral ligament [ALL] and capsule cut) states. Thereafter, ACL reconstruction was performed alone and in combination with the following: modified MacIntosh tenodesis, modified Lemaire tenodesis passed both superficial and deep to the lateral collateral ligament, and ALL reconstruction. Anterolateral grafts were fixed at 30° of knee flexion with both 20 and 40 N of tension. Statistical analysis used repeated-measures analyses of variance and paired t tests with Bonferroni adjustments. Results: ACL reconstruction alone failed to restore native knee kinematics in combined ACL plus anterolateral–injured knees ( P < .05 for all). All combined reconstructions with 20 N of tension, except for ALL reconstruction ( P = .002-.01), restored anterior translation. With 40 N of tension, the superficial Lemaire and MacIntosh procedures overconstrained the anterior laxity in deep flexion. Only the deep Lemaire and MacIntosh procedures—with 20 N of tension—restored rotational kinematics to the intact state ( P > .05 for all), while the ALL underconstrained and the superficial Lemaire overconstrained internal rotation. The same procedures with 40 N of tension led to similar findings. Conclusion: In a combined ACL plus anterolateral–injured knee, ACL reconstruction alone failed to restore intact knee kinematics. The addition of either the deep Lemaire or MacIntosh tenodesis tensioned with 20 N, however, restored native knee kinematics. Clinical Relevance: The current study indicates that unaddressed anterolateral injuries, in the presence of an ACL deficiency, result in abnormal knee kinematics that is not restored if only treated with intra-articular ACL reconstruction. Both the modified MacIntosh and modified deep Lemaire tenodeses (with 20 N of tension) restored native knee kinematics at time zero.


Author(s):  
Shinichiro Nakamura ◽  
Yoshihisa Tanaka ◽  
Shinichi Kuriyama ◽  
Kohei Nishitani ◽  
Mutsumi Watanabe ◽  
...  

AbstractTunnel position during anterior cruciate ligament (ACL) reconstruction is considered as an important factor to restore normal knee kinematics and to gain better clinical outcomes. It is still unknown where the optimal femoral and tibial tunnel position is located in single-bundle (SB) ACL reconstruction. The purposes of this study were to analyze the knee kinematics with various graft positions and to propose the optimal graft position during SB ACL reconstruction. A musculoskeletal computer simulation was used to analyze knee kinematics. Four attachments on the femoral side (anteromedial [AM], mid, posterolateral [PL], and over-the-top positions) and three attachments on the tibial side (AM, middle, and PL positions) were determined. The middle-bundle attachment was placed at the midpoint of the AM and PL bundle attachments for the femoral and tibial attachments. SB ACL reconstruction models were constructed to combine each of the four femoral attachments with each of three tibial attachments. Kinematic comparison was made among a double-bundle (DB) model and 12 SB reconstruction models during deep knee bend and stair descent activity. The tunnel position of the tibia had greater effect of knee kinematics than that of the femur. AM tibial attachment models showed similar medial and lateral anteroposterior positions to the DB model for both activities. Axial rotation in the AM tibial attachment models was similar to the DB model regardless of the femoral attachment, whereas greater maximum axial rotation was exhibited in the PL tibial attachment models, especially during stair descent activity. AM tibial attachment can represent normal knee kinematics, whereas the PL tibial attachment can induce residual rotational instability during high-demand activities. The AM tibial tunnel is recommended for SB ACL reconstruction.


Author(s):  
Willem M.P. Heijboer ◽  
Mathijs A.M. Suijkerbuijk ◽  
Belle L. van Meer ◽  
Eric W.P. Bakker ◽  
Duncan E. Meuffels

AbstractMultiple studies found hamstring tendon (HT) autograft diameter to be a risk factor for anterior cruciate ligament (ACL) reconstruction failure. This study aimed to determine which preoperative measurements are associated with HT autograft diameter in ACL reconstruction by directly comparing patient characteristics and cross-sectional area (CSA) measurement of the semitendinosus and gracilis tendon on magnetic resonance imaging (MRI). Fifty-three patients with a primary ACL reconstruction with a four-stranded HT autograft were included in this study. Preoperatively we recorded length, weight, thigh circumference, gender, age, preinjury Tegner activity score, and CSA of the semitendinosus and gracilis tendon on MRI. Total CSA on MRI, weight, height, gender, and thigh circumference were all significantly correlated with HT autograft diameter (p < 0.05). A multiple linear regression model with CSA measurement of the HTs on MRI, weight, and height showed the most explained variance of HT autograft diameter (adjusted R 2 = 44%). A regression equation was derived for an estimation of the expected intraoperative HT autograft diameter: 1.2508 + 0.0400 × total CSA (mm2) + 0.0100 × weight (kg) + 0.0296 × length (cm). The Bland and Altman analysis indicated a 95% limit of agreement of ± 1.14 mm and an error correlation of r = 0.47. Smaller CSA of the semitendinosus and gracilis tendon on MRI, shorter stature, lower weight, smaller thigh circumference, and female gender are associated with a smaller four-stranded HT autograft diameter in ACL reconstruction. Multiple linear regression analysis indicated that the combination of MRI CSA measurement, weight, and height is the strongest predictor.


2021 ◽  
Vol 9 (2) ◽  
pp. 232596712098164
Author(s):  
Steven F. DeFroda ◽  
Devan D. Patel ◽  
John Milner ◽  
Daniel S. Yang ◽  
Brett D. Owens

Background: Anterior cruciate ligament (ACL) injury in National Basketball Association (NBA) players can have a significant impact on player longevity and performance. Current literature reports a high rate of return to play, but there are limited data on performance after ACL reconstruction (ACLR). Purpose/Hypothesis: To determine return to play and player performance in the first and second seasons after ACLR in NBA players. We hypothesized that players would return at a high rate. However, we also hypothesized that performance in the first season after ACLR would be worse as compared with the preinjury performance, with a return to baseline by postoperative year 2. Study Design: Case series; Level of evidence, 4. Methods: An online database of NBA athlete injuries between 2010 and 2019 was queried using the term ACL reconstruction. For the included players, the following data were recorded: name; age at injury; position; height, weight, and body mass index; handedness; NBA experience; dates of injury, surgery, and return; knee affected; and postoperative seasons played. Regular season statistics for 1 preinjury season and 2 postoperative seasons were compiled and included games started and played, minutes played, and player efficiency rating. Kaplan-Meier survivorship plots were computed for athlete return-to-play and retirement endpoints. Results: A total of 26 athletes underwent ACLR; of these, 84% (95% CI, 63.9%-95.5%) returned to play at a mean 372.5 days (95% CI, 323.5-421.5 days) after surgery. Career length after injury was a mean of 3.36 seasons (95% CI, 2.27-4.45 seasons). Factors that contributed to an increased probability of return to play included younger age at injury (odds ratio, 0.71 [95% CI, 0.47-0.92]; P = .0337) and fewer years of experience in the NBA before injury (odds ratio, 0.70 [95% CI, 0.45-0.93]; P = .0335). Postoperatively, athletes played a significantly lower percentage of total games in the first season (48.4%; P = .0004) and second season (62.1%; P = .0067) as compared with the preinjury season (78.5%). Player efficiency rating in the first season was 19.3% less than that in the preinjury season ( P = .0056). Performance in the second postoperative season was not significantly different versus preinjury. Conclusion: NBA players have a high rate of RTP after ACLR. However, it may take longer than a single season for elite NBA athletes to return to their full preinjury performance. Younger players and those with less NBA experience returned at higher rates.


2021 ◽  
Vol 9 (7_suppl3) ◽  
pp. 2325967121S0010
Author(s):  
Brett Heldt ◽  
Elsayed Attia ◽  
Raymond Guo ◽  
Indranil Kushare ◽  
Theodore Shybut

Background: Acute anterior cruciate ligament(ACL) rupture is associated with a significant incidence of concomitant meniscal and chondral injuries. However, to our knowledge, the incidence of these concomitant injuries in skeletally immature(SI) versus skeletally mature(SM) patients has not been directly compared. SI patients are a unique subset of ACL patients because surgical considerations are different, and subsequent re-tear rates are high. However, it is unclear if the rates and types of meniscal and chondral injuries differ. Purpose: The purpose of this study is to compare associated meniscal and chondral injury patterns between SI and SM patients under age 21, treated with ACL reconstruction for an acute ACL tear. We hypothesized that no significant differences would be seen. Methods: We performed a single-center retrospective review of primary ACL reconstructions performed from January 2012 to April 2020. Patients were stratified by skeletal maturity status based on a review of records and imaging. Demographic data was recorded, including age, sex, and BMI. Associated intra-articular meniscal injury, including laterality, location, configuration, and treatment were determined. Articular cartilage injury location, grade, and treatments were determined. Revision rates, non-ACL reoperation rates, and time to surgery were also compared between the two groups. Results: 785 SM and 208 SI patients met inclusion criteria. Mean BMI and mean age were significantly different between groups. Meniscal tear rates were significantly greater in SM versus SI patients in medial meniscus tears(P<.001), medial posterior horn tears(P=.001), medial longitudinal tears configuration(P=.007), lateral Radial configuration(P=.002), and lateral complex tears(P=.011). Medial repairs(P<.001) and lateral partial meniscectomies(P=.004) were more likely in the SM group. There was a significantly greater number of chondral injuries in the SM versus SI groups in the Lateral(p=.007) and medial compartments(P<.001). SM patients had a significantly increased number of outerbridge grade 1 and 2 in the Lateral(P<.001) and Medial Compartments(P=.013). ACL revisions(P=.019) and Non-ACL reoperations(P=.002) were significantly greater in the SI patients compared to SM. No other significant differences were noted. Conclusion: SM ACL injured patients have a significantly higher rate of medial meniscus tears and medial longitudinal configurations treated with repair, and a significantly higher rate of radial and/or complex lateral meniscus tears treated with partial meniscectomy compared to the SI group. We also found a significantly higher rate of both medial and lateral compartment chondral injuries, mainly grades 1 and 2, in SM compared to SI patients. Conversely, SI ACL reconstruction patients had higher revision and subsequent non-ACL surgery rates.


2021 ◽  
pp. 155633162199200
Author(s):  
Ravi Gupta ◽  
Anil Kapoor ◽  
Sourabh Khatri ◽  
Dinesh Sandal ◽  
Gladson David Masih

Background: Osteoarthritis (OA) in the anterior cruciate ligament (ACL)–deficient knee is seen in approximately 50% of affected patients. Possible causes include biochemical or biomechanical changes. Purpose: We sought to study the correlation between inflammatory cytokines and chondral damage in ACL-deficient knees. Methods: Seventy-six male patients who underwent ACL reconstruction were enrolled in a cross-sectional study. Synovial fluid was aspirated before surgery and analyzed for levels of the inflammatory cytokines tumor necrosis factor-α, interleukin-1 (IL-1), and interleukin-6 (IL-6). At the time of ACL reconstruction, the severity of chondral damage was documented as described by the Outerbridge classification. Results: Patients with grade 2 or higher chondral damage were observed to have elevated IL-6 levels when compared to patients who had no chondral damage. Interleukin-6 levels had no correlation with the duration of injury. Conclusion: Elevated levels of IL-6 in synovial fluid were associated with chondral damage in ACL-deficient knees. Further study is warranted to determine whether inflammatory cytokines contribute to the development of OA of the knee after ACL injury.


Sign in / Sign up

Export Citation Format

Share Document