Air quality deterministic and probabilistic forecasting system based on hesitant fuzzy sets and nonlinear robust outlier correction

2021 ◽  
pp. 107789
Author(s):  
Hongmin Li ◽  
Jianzhou Wang ◽  
Hufang Yang ◽  
Ying Wang
2019 ◽  
Vol 4 ◽  
pp. 203-218
Author(s):  
I.N. Kusnetsova ◽  
◽  
I.U. Shalygina ◽  
M.I. Nahaev ◽  
U.V. Tkacheva ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 302
Author(s):  
Rajesh Kumar ◽  
Piyush Bhardwaj ◽  
Gabriele Pfister ◽  
Carl Drews ◽  
Shawn Honomichl ◽  
...  

This paper describes a quasi-operational regional air quality forecasting system for the contiguous United States (CONUS) developed at the National Center for Atmospheric Research (NCAR) to support air quality decision-making, field campaign planning, early identification of model errors and biases, and support the atmospheric science community in their research. This system aims to complement the operational air quality forecasts produced by the National Oceanic and Atmospheric Administration (NOAA), not to replace them. A publicly available information dissemination system has been established that displays various air quality products, including a near-real-time evaluation of the model forecasts. Here, we report the performance of our air quality forecasting system in simulating meteorology and fine particulate matter (PM2.5) for the first year after our system started, i.e., 1 June 2019 to 31 May 2020. Our system shows excellent skill in capturing hourly to daily variations in temperature, surface pressure, relative humidity, water vapor mixing ratios, and wind direction but shows relatively larger errors in wind speed. The model also captures the seasonal cycle of surface PM2.5 very well in different regions and for different types of sites (urban, suburban, and rural) in the CONUS with a mean bias smaller than 1 µg m−3. The skill of the air quality forecasts remains fairly stable between the first and second days of the forecasts. Our air quality forecast products are publicly available at a NCAR webpage. We invite the community to use our forecasting products for their research, as input for urban scale (<4 km), air quality forecasts, or the co-development of customized products, just to name a few applications.


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 557 ◽  
Author(s):  
Jiaru Li ◽  
Fangwei Zhang ◽  
Qiang Li ◽  
Jing Sun ◽  
Janney Yee ◽  
...  

The subject of this study is to explore the role of cardinality of hesitant fuzzy element (HFE) in distance measures on hesitant fuzzy sets (HFSs). Firstly, three parameters, i.e., credibility factor, conservative factor, and a risk factor are introduced, thereafter, a series of novel distance measures on HFSs are proposed using these three parameters. These newly proposed distance measures handle the relationship between the cardinal number and the element values of hesitant fuzzy set well, and are suitable to combine subjective and objective decision-making information. When using these functions, decision makers with different risk preferences are allowed to give different values for these three parameters. In particular, this study transfers the hesitance degree index to a credibility of the values in HFEs, which is consistent with people’s intuition. Finally, the practicability of the newly proposed distance measures is verified by two examples.


Sign in / Sign up

Export Citation Format

Share Document