scholarly journals Effects of long-term dipeptidyl peptidase-IV inhibition on body composition and glucose tolerance in high fat diet-fed mice

Life Sciences ◽  
2009 ◽  
Vol 84 (25-26) ◽  
pp. 876-881 ◽  
Author(s):  
Xibao Liu ◽  
Norio Harada ◽  
Shunsuke Yamane ◽  
Lisa Kitajima ◽  
Saeko Uchida ◽  
...  
2002 ◽  
pp. 717-727 ◽  
Author(s):  
MK Reimer ◽  
JJ Holst ◽  
B Ahren

OBJECTIVES: Inhibitors of the glucagon-like peptide-1 (GLP-1)-degrading enzyme, dipeptidyl peptidase IV (DPPIV), are being explored in the treatment of diabetes. We examined the long-term influence of a selective, orally active inhibitor of DPPIV (NVP DPP728), in normal female C57BL/6J mice and such mice rendered glucose-intolerant and insulin-resistant by feeding a high-fat diet. DESIGN: In mice fed a standard diet (11% fat) or a high-fat diet (58% fat), NVP DPP728 (0.12 micromol/g body weight) was administered in the drinking water for an 8 week period. RESULTS: DPPIV inhibition reduced plasma DPPIV activity to 0.01+/-0.03 mU/ml vs 3.26+/-0.19 mU/ml in controls (P<0.001). Glucose tolerance after gastric glucose gavage, as judged by the area under the curve for plasma glucose levels over the 120 min study period, was increased after 8 weeks by NVP DPP728 in mice fed normal diet (P=0.029) and in mice fed a high-fat diet (P=0.036). This was accompanied by increased plasma levels of insulin and intact GLP-1. Glucose-stimulated insulin secretion from islets isolated from NVP DPP728-treated animals after 8 weeks of treatment was increased as compared with islets from control animals at 5.6, 8.3 and 11.1 mmol/l glucose both in mice fed normal diet and in mice fed a high-fat diet (both P<0.05). Islet insulin and glucagon immunocytochemistry revealed that NVP DPP728 did not affect the islet architecture. However, the expression of immunoreactive glucose transporter isoform-2 (GLUT-2) was increased by DPPIV inhibition, and in mice fed a high-fat diet, islet size was reduced after treatment with NVP DPP728 from 16.7+/-2.6 x 10(3) microm(2) in controls to 7.6+/-1.0 x 10(3) microm(2) (P=0.0019). CONCLUSION: Long-term DPPIV inhibition improves glucose tolerance in both normal and glucose-intolerant mice through improved islet function as judged by increased GLUT-2 expression, increased insulin secretion and protection from increased islet size in insulin resistance.


2014 ◽  
Vol 5 (3) ◽  
pp. 229-239 ◽  
Author(s):  
K. M. Platt ◽  
R. J. Charnigo ◽  
K. J. Pearson

Maternal high-fat diet consumption and obesity have been shown to program long-term obesity and lead to impaired glucose tolerance in offspring. Many rodent studies, however, use non-purified, cereal-based diets as the control for purified high-fat diets. In this study, primiparous ICR mice were fed purified control diet (10–11 kcal% from fat of lard or butter origin) and lard (45 or 60 kcal% fat) or butter (32 or 60 kcal% fat)-based high-fat diets for 4 weeks before mating, throughout pregnancy, and for 2 weeks of nursing. Before mating, female mice fed the 32 and 60% butter-based high-fat diets exhibited impaired glucose tolerance but those females fed the lard-based diets showed normal glucose disposal following a glucose challenge. High-fat diet consumption by female mice of all groups decreased lean to fat mass ratios during the 4th week of diet treatment compared with those mice consuming the 10–11% fat diets. All females were bred to male mice and pregnancy and offspring outcomes were monitored. The body weight of pups born to 45% lard-fed dams was significantly increased before weaning, but only female offspring born to 32% butter-fed dams exhibited long-term body weight increases. Offspring glucose tolerance and body composition were measured for at least 1 year. Minimal, if any, differences were observed in the offspring parameters. These results suggest that many variables should be considered when designing future high-fat diet feeding and maternal obesity studies in mice.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Darren Mehay ◽  
Sarah Bingaman ◽  
Yuval Silberman ◽  
Amy Arnold

Angiotensin (Ang)-(1-7) is a protective hormone of the renin-angiotensin system that improves insulin sensitivity, glucose tolerance, and energy balance in obese rodents. Our recent findings suggest that Ang-(1-7) activates mas receptors (MasR) in the arcuate nucleus of the hypothalamus (ARC), a brain region critical to control of energy balance and glucose homeostasis, to induce these positive metabolic effects. The distribution of MasR in the ARC and their role in metabolic regulation, however, is unknown. We hypothesized: (1) MasR are expressed in the ARC; and (2) deletion of ARC MasR leads to worsened metabolic outcomes following high fat diet (HFD). To test this, male and female C57Bl/6J mice were fed a 60% HFD or matched control diet ad libitum for 12 weeks. RNAscope in situ hybridization was performed on coronal ARC sections in rostral-middle-caudal regions to determine percentage of MasR positive neurons (n=5/group). In a second experiment, we assessed body composition and insulin and glucose tolerance in transgenic mice with deletion of MasR in ARC neurons (MasR-flox with AAV5-hsyn-GFP-Cre). RNAscope revealed a wide distribution on MasR-positive cells throughout the rostral to caudal extent of the ARC. The average percentage of MasR positive neurons was increased in females versus males, with HFD tending to increase MasR expression in both sexes (control diet male: 11±2; control diet female: 17±3; HFD male: 15±5; HFD female: 24±2; p sex : 0.030; p diet : 0.066; p int : 0.615; two-way ANOVA). Deletion of MasR in ARC neurons worsened insulin sensitivity in HFD but not control diet females (area under the curve for change in glucose from baseline: -1989±1359 HFD control virus vs. 2530±1762 HFD Cre virus; p=0.016), while fasting glucose, glucose tolerance, and body composition did not change. There was no effect of ARC MasR deletion on metabolic outcomes in control diet or HFD male mice. These findings suggest females have more MasR positive neurons in the ARC compared to males, which may be a sex-specific protective mechanism for glucose homeostasis. While further studies are needed to explore the role of ARC MasR in metabolic regulation, these findings support targeting Ang-(1-7) as an innovative strategy in obesity.


Obesity ◽  
2014 ◽  
Vol 22 (10) ◽  
pp. 2147-2155 ◽  
Author(s):  
Yongbin Yang ◽  
Daniel L. Smith ◽  
Karen D. Keating ◽  
David B. Allison ◽  
Tim R. Nagy

2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 1126-1126
Author(s):  
Weimin Guo ◽  
Dayong Wu ◽  
Lijun Li ◽  
Edwin Ortega ◽  
Yankun Liu ◽  
...  

Abstract Objectives Obesity is associated with impaired immune function. However, impact of obesity on blood T cell profile is not well studied. The objectives of this study were to investigate the effects of high fat diet (HFD)-induced obesity and long-term fruits and vegetable (FV) consumption on body composition and blood T cell profile. Methods This is partial report from an ongoing study. A total of 240 male C57BL/6J mice were randomly assigned to 4 groups: low fat control (LF-C) or high-fat control (HF-C) diet alone, or together with 15% of a unique mixture of FV (w/w, equivalent to 7–9 servings F&V/d for human) (LF-FV or HF-FV). The feeding will continue until 50% mortality is reached in one group. Body weight, body composition (using MRI), and blood T cell profile (using FACS) are monitored longitudinally at different time points. The results reported here are those assessed when mice were 7 months old. Results After 7 months of feeding, mice fed HF-C gained more weight compared to those fed LF-C. Mice fed HF-FV or LF-FV diets had significantly reduced weight gain and fat mass, and higher muscle mass compared to those fed HF-C or LF-C diet, respectively. Mice fed HF-C also had significantly lower percentage of blood CD3+, CD4+, and CD8 + T cells compared with the LF-C. FV supplementation prevented HFD-induced decrease in percentage of CD3+ and CD4+ cells. Furthermore, both % CD3+ and CD4+ cells were negatively correlated with body weight (P &lt; 0.001) or percentage of fat mass (P &lt; 0.001), and positively associated with percentage of lean mass (P &lt; 0.001). Conclusions Our results suggest that consuming large amounts of a unique mixture of F&V curbs HFD-induced body weight gain, reduces fat mass, and favorably affects blood T cell population. Ongoing studies will assess these analytes when mice are 16 months old, and again when one group reaches 50% mortality, and determine their correlations with functional measures of T cell response, host resistance to infection, health span, and mortality. Funding Sources This study was supported by the U.S. Department of Agriculture – Agricultural Research Service (ARS), under Agreement No. 58–1950-4–004.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 6006
Author(s):  
Keisuke Fukumura ◽  
Yuki Narimatsu ◽  
Shogo Moriwaki ◽  
Eiko Iwakoshi-Ukena ◽  
Megumi Furumitsu ◽  
...  

We previously identified a novel small hypothalamic protein, neurosecretory protein GL (NPGL), which induces feeding behavior and fat accumulation in rodents depending on their diet. In the present study, we explored the effects of NPGL on feeding behavior and energy metabolism in mice placed on a long-term high-fat diet with 60% calories from fat (HFD 60). Overexpression of the NPGL precursor gene (Npgl) over 18 weeks increased food intake and weight. The weekly weight gain of Npgl-overexpressing mice was higher than that of controls until 7 weeks from induction of overexpression, after which it ceased to be so. Oral glucose tolerance tests showed that Npgl overexpression maintained glucose tolerance and increased blood insulin levels, and intraperitoneal insulin tolerance tests showed that it maintained insulin sensitivity. At the experimental endpoint, Npgl overexpression was associated with increased mass of the perirenal white adipose tissue (WAT) and decreased mass of the epididymal WAT (eWAT), resulting in little effect on the total WAT mass. These results suggest that under long-term HFD 60 feeding, Npgl overexpression may play a role in avoiding metabolic disturbance both by accelerating energy storage and by suppressing excess fat accumulation in certain tissues, such as the eWAT.


Sign in / Sign up

Export Citation Format

Share Document