Peroxidized unsaturated fatty acids stimulate Toll-like receptor 4 signaling in endothelial cells

Life Sciences ◽  
2013 ◽  
Vol 92 (20-21) ◽  
pp. 984-992 ◽  
Author(s):  
Akiko Mutoh ◽  
Shinichiro Ueda
2016 ◽  
Vol 38 (6) ◽  
pp. 2139-2151 ◽  
Author(s):  
Won Seok Yang ◽  
Nam Jeong Han ◽  
Jin Ju Kim ◽  
Mee Jeong Lee ◽  
Su-Kil Park

Background/Aims: Toll-like receptor 4 (TLR4) interacts with endogenous substances as well as lipopolysaccharide. We explored whether TLR4 is implicated in tumor necrosis factor-α (TNF-α) signal transduction in human aortic endothelial cells. Methods: The pathway was evaluated by transfection of siRNAs, immunoprecipitation and Western blot analysis. Results: TNF-α activated spleen tyrosine kinase (Syk) within 10 min, which led to endothelin-1 (ET-1) production. TLR4 was also rapidly activated by TNF-α stimulation, as shown by recruitment of interleukin-1 receptor-associated kinase 1 to TLR4 and its adaptor molecule, myeloid differentiation factor 88 (MyD88). siRNA depletion of TLR4 markedly attenuated TNF-α-induced Syk activation and ET-1 production. TLR4 inhibitor (CLI-095), TLR4-neutralizing antibody and siRNA depletion of MyD88 also attenuated TNF-α-induced Syk activation. Syk was co-immunoprecipitated with TLR4, and TNF-α activated Syk bound to TLR4. High-mobility group box 1 (HMGB1) was rapidly released and associated with TLR4 after TNF-α stimulation with a peak at 5 min, which was prevented by N-acetylcysteine, an antioxidant. Glycyrrhizin (HMGB1 inhibitor), HMGB1-neutralizing antibody and siRNA depletion of HMGB1 all suppressed TNF-α-induced Syk activation and ET-1 production. Conclusion: Upon TNF-α stimulation, TLR4 is activated by HMGB1 that is immediately released after the generation of reactive oxygen species, and plays a crucial role in the signal transduction.


2018 ◽  
Vol 45 (5) ◽  
pp. 1851-1862 ◽  
Author(s):  
Won Seok Yang ◽  
Jin Ju Kim ◽  
Mee Jeong Lee ◽  
Eun Kyoung Lee ◽  
Su-Kil Park

Background/Aims: Lipopolysaccharide (LPS)-activated monocytes/macrophages develop endotoxin tolerance in part by reducing cell surface toll-like receptor 4 (TLR4) through cluster of differentiation 14 (CD14)-dependent endocytosis. In case of endothelial cells, CD14 is expressed in low copy numbers as compared with monocytes/macrophages. Thus, we explored how endothelial cells regulate TLR4 expression after LPS stimulation. Methods: Cultured human aortic endothelial cells (HAECs) were treated with LPS. TLR4 expression was analyzed by Western blot analysis and immunofluorescence staining. A disintegrin and metalloprotease 17 (ADAM17) activity was measured using a fluorescent substrate. Results: TLR4 in cell lysate began to decrease within 30 min of LPS treatment with a maximal reduction at 2 h, and it was accompanied by an increase of N-terminal fragment of TLR4 in culture supernatant, indicating ectodomain shedding of the receptor. LPS activated p38 mitogen-activated protein kinase (p38 MAPK) and ADAM17, while LPS-induced ADAM17 activation was inhibited by SB203580, a p38 MAPK inhibitor. LPS-induced ectodomain shedding of TLR4 was attenuated by siRNA depletion of ADAM17 as well as TAPI-2 (an inhibitor of ADAM family) and SB203580. LPS pretreatment resulted in a blunted response of p38 MAPK activation to further LPS stimulation. In the cells depleted of ADAM17, LPS-induced p38 MAPK activation was prolonged and LPS-induced intercellular adhesion molecule-1 expression was potentiated. Conclusion: HAECs respond to LPS by rapid shedding of the ectodomain of TLR4 and thereby reduce the responsiveness to subsequent LPS exposure. ADAM17, downstream of p38 MAPK, is implicated in the ectodomain cleavage of TLR4.


2011 ◽  
Vol 300 (5) ◽  
pp. H1743-H1752 ◽  
Author(s):  
Ying Wang ◽  
Ming Xiang Zhang ◽  
Xiao Meng ◽  
Fu Qiang Liu ◽  
Guang Sheng Yu ◽  
...  

In the present study, we tested our hypothesis that atorvastatin exerts its anti-inflammation effect via suppressing LPS-induced rapid upregulation of Toll-like receptor 4 (TLR4) mRNA and its downstream p38, ERK, and NF-κB signaling pathways in human umbilical-vein endothelial cells (HUVECs) and human aortic endothelial cells (HAECs). TLR4 mRNA expression and its downstream kinase activities induced by LPS alone or atorvastatin + LPS in endothelial cells were quantified using quantitative real-time PCR and enzyme-linked immunosorbent assay. Preincubation of LPS-stimulated endothelial cells with TLR4 siRNA was conducted to identify the target of the anti-inflammatory effects of atorvastatin. Atorvastatin incubation resulted in the reduction of LPS-induced TLR4 mRNA expression, ERK1/2 and P38 MAPK phosphorylation, and NF-κB binding activity. Pretreatment with MEK/ERK1/2 inhibitor PD98059 attenuated atorvastatin + LPS-induced NF-κB activity but had no effect on P38 MAPK phosphorylation. In contrast, pretreatment with P38 MAPK inhibitor SB203580 resulted in upregulation of atorvastatin + LPS-induced ERK1/2 phosphorylation but had no significant effects on NF-κB activity. On the other hand, blocking NF-κB with SN50 produced no effects on atorvastatin + LPS-induced ERK1/2 and P38 MAPK phosphorylation. Moreover, TLR4 gene silencing produced the same effects as the atorvastatin treatment. In conclusion, atorvastatin downregulated TLR4 mRNA expression by two distinct signaling pathways. First, atorvastatin stabilized Iκ-Bα, which directly inhibited NF-κB activation. Second, atorvastatin inactivated ERK phosphorylation, which indirectly inhibited NF-κB activation. Suppression of p38 MAPK by atorvastatin upregulates ERK but exerts no effect on NF-κB.


2011 ◽  
Vol 12 (1) ◽  
pp. 85
Author(s):  
R. Menghini ◽  
M. Tesauro ◽  
V. Rovella ◽  
A. Marino ◽  
R. Lauro ◽  
...  

2008 ◽  
Vol 52 (5) ◽  
pp. 581-588 ◽  
Author(s):  
Michael Reinbold ◽  
Birgit Hufnagel ◽  
Tobias Kewitz ◽  
Susanne Klumpp ◽  
Josef Krieglstein

Diabetes ◽  
2006 ◽  
Vol 55 (11) ◽  
pp. 3121-3126 ◽  
Author(s):  
K. Staiger ◽  
H. Staiger ◽  
C. Weigert ◽  
C. Haas ◽  
H.-U. Haring ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document