The role of SOX18 in bladder cancer and its underlying mechanism in mediating cellular functions

Life Sciences ◽  
2019 ◽  
Vol 232 ◽  
pp. 116614
Author(s):  
Yin Huaqi ◽  
Qin Caipeng ◽  
Wang Qiang ◽  
Du Yiqing ◽  
Xu Tao
2019 ◽  
Author(s):  
Fangjia Tong ◽  
Siwei Zhang ◽  
Huanhuan Xie ◽  
Bingqing Yan ◽  
Lianhao Song ◽  
...  

AbstractHuman papillomavirus (HPV) is an etiological risk factor for a subset of head and neck squamous cell carcinoma (HNSCC). HPV+ HNSCC is significant more radiosensitive than HPV-HNSCC, but the underlying mechanism is still unknown. Tumor microenvironment can affect tumor response to radiation therapy. Cancer secreted exosomes are emerging as crosstalk mediators between tumor cells and the tumor microenvironment. The main objectives of this study were to determine the role of HPV+ HNSCC-derived exosomes in increased radiation sensitivity. Here, we found that exosomes derived from HPV+ HNSCC cells activate macrophages into the M1 phenotype, which then increases the radiosensitivity of HNSCC cells. miR-9 was enriched in exosomes released from HPV+ HNSCC cells and it could be transported to macrophages, leading to altered cellular functions. Overexpression of miR-9 in macrophages induced polarization into the M1 phenotype via downregulation of PPARδ. Increased radiosensitivity was observed for HNSCC cells co-cultured with macrophages in which miR-9 was upregulated or treated with M1 macrophages. These observations suggest that HPV+ HNSCC cells secrete miR-9-rich exosomes, which then polarize macrophages into M1 phenotype and lead to increased radiosensitivity of HNSCC cells. Hence, miR-9 may be a potential treatment strategy for HNSCC.Statement of significanceHPV+ HNSCC through the release of miR-9-rich exosomes polarize macrophages into M1 phenotype and lead to increased radiosensitivity of HNSCC.


2021 ◽  
Vol 29 (1) ◽  
pp. 9-18
Author(s):  
Costin Petcu ◽  
Catalin Baston ◽  
Emil Angelescu ◽  
Maria Mirela Iacob ◽  
Ileana Constantinescu ◽  
...  

Abstract MicroRNAs (miRNAs) are a group of non-coding RNA molecules that have an important role in modulating the expression of genes involved in regulating cellular functions. A growing number of studies suggest the abnormal expression of microRNAs in different types of cancer cells. MiRNA-124 is a microRNA that is down-regulated in many types of cancer cells, including bladder cancer. Our objective is to provide a review of the key publications that studied the effect of miR-124 on bladder cancer. This review focus on the targets and different pathways of miR-124 that were identified in various studies and differences between their expressions in normal urothelium and tumor tissues. We also include data regarding urinary methylations levels of miR-124 and their role in bladder cancer diagnosis and prognosis. Subsequently, we establish future perspectives of miR-124 research and its promising role in bladder cancer.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 275
Author(s):  
Martina Kristofova ◽  
Alessandro Ori ◽  
Zhao-Qi Wang

MCPH1, or BRIT1, is often mutated in human primary microcephaly type 1, a neurodevelopmental disorder characterized by a smaller brain size at birth, due to its dysfunction in regulating the proliferation and self-renewal of neuroprogenitor cells. In the last 20 years or so, genetic and cellular studies have identified MCPH1 as a multifaceted protein in various cellular functions, including DNA damage signaling and repair, the regulation of chromosome condensation, cell-cycle progression, centrosome activity and the metabolism. Yet, genetic and animal model studies have revealed an unpredicted essential function of MPCH1 in gonad development and tumorigenesis, although the underlying mechanism remains elusive. These studies have begun to shed light on the role of MPCH1 in controlling various pathobiological processes of the disorder. Here, we summarize the biological functions of MCPH1, and lessons learnt from cellular and mouse models of MCPH1.


2005 ◽  
Vol 173 (4S) ◽  
pp. 214-215 ◽  
Author(s):  
Daniel Cho ◽  
Xiao Fang Ha ◽  
J. Andre Melendez ◽  
Louis J. Giorgi ◽  
Badar M. Mian

2019 ◽  
Vol 24 (39) ◽  
pp. 4659-4667 ◽  
Author(s):  
Mona Fani ◽  
Milad Zandi ◽  
Majid Rezayi ◽  
Nastaran Khodadad ◽  
Hadis Langari ◽  
...  

MicroRNAs (miRNAs) are non-coding RNAs with 19 to 24 nucleotides which are evolutionally conserved. MicroRNAs play a regulatory role in many cellular functions such as immune mechanisms, apoptosis, and tumorigenesis. The main function of miRNAs is the post-transcriptional regulation of gene expression via mRNA degradation or inhibition of translation. In fact, many of them act as an oncogene or tumor suppressor. These molecular structures participate in many physiological and pathological processes of the cell. The virus can also produce them for developing its pathogenic processes. It was initially thought that viruses without nuclear replication cycle such as Poxviridae and RNA viruses can not code miRNA, but recently, it has been proven that RNA viruses can also produce miRNA. The aim of this articles is to describe viral miRNAs biogenesis and their effects on cellular and viral genes.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yanxia Zhan ◽  
Junxian Du ◽  
Zhihui Min ◽  
Li Ma ◽  
Wei Zhang ◽  
...  

AbstractHypoxia is a common phenomenon in solid tumors. The roles of exosomes from hypoxic breast cancer stroma are less studied. So, the study was aimed to investigate the role of exosomes from hypoxic cancer-associated fibroblasts (CAFs) cells in breast cancer. The circRNA array analysis was performed to screen differential expressed circRNAs between hypoxic and normoxic CAFs exosomes. Candidate circHIF1A (circ_0032138) was screened out and it was confirmed that circHIF1A was up-regulated in the exosomes from hypoxic CAFs and their exosomes. Through investigating cellular functions including cell proliferation and stem cell features, it was demonstrated that hypoxic CAFs exosomes transferred circHIF1A into breast cancer cells, which played an important role in cancer stem cell properties sponging miR-580-5p by regulating CD44 expression. In a summary, circHIF1A from hypoxic CAFs exosomes played an important role in stem cell properties of breast cancer. CircHIF1A may act as a target molecule of breast cancer therapy.


2021 ◽  
pp. 1-15
Author(s):  
Mohamed Elbadawy ◽  
Yomogi Sato ◽  
Takashi Mori ◽  
Yuta Goto ◽  
Kimika Hayashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document