Cardamonin: A new player to fight cancer via multiple cancer signaling pathways

Life Sciences ◽  
2020 ◽  
Vol 250 ◽  
pp. 117591 ◽  
Author(s):  
Javaria Nawaz ◽  
Azhar Rasul ◽  
Muhammad Ajmal Shah ◽  
Ghulam Hussain ◽  
Ammara Riaz ◽  
...  
Author(s):  
Mohd Rohaizad Md Roduan ◽  
Norhafizah Mohtarrudin ◽  
Roslida Abd Hamid

Annonacin, an annonaceous acetogenin isolated from Annona muricata has been reported to be strongly cytotoxic against various cell lines, in vitro. Nevertheless, its effect against in vivo tumor promoting activity has not been reported yet. Therefore, this study was aimed to investigate antitumor-promoting activity of annonacin via in vivo two-stage mouse skin tumorigenesis model and its molecular pathways involved. Annonacin 85 nM was topically applied to DMBA/TPA-induced ICR mice for 22 weeks of treatment. Histopathological examination of skin, liver and kidney as well as genes and proteins expression analysis were conducted. Annonacin significantly increased the tumor latency period and also reduced the tumor incidence, tumor burden and tumor volume, respectively. In addition, it also suppressed tumorigenesis manifested by significant reduction of hyperkeratosis, dermal papillae and number of keratin pearls on skin tissues. Annonacin also appeared to be non-toxic to liver and kidney. Significant modulation of both AKT, ERK, MTOR, p38, PTEN and Src genes and proteins were also observed in annonacin-targeted signaling pathway(s) against tumorigenesis. Collectively, results of this study indicate that annonacin is a potential therapeutic compound targeting tumor promoting stage in skin tumorigenesis by modulating multiple gene and protein in cancer signaling pathways without apparent toxicity.


2013 ◽  
Vol 30 (1) ◽  
pp. 292-298 ◽  
Author(s):  
JIAN-LI GAO ◽  
GUI-YUAN LV ◽  
BAI-CHENG HE ◽  
BING-QIANG ZHANG ◽  
HONGYU ZHANG ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Grażyna Łaska ◽  
Magdalena Maciejewska-Turska ◽  
Elwira Sieniawska ◽  
Łukasz Świątek ◽  
David S. Pasco ◽  
...  

AbstractThe purpose of this study was to determine if a methanolic extract of the Pulsatilla patens (L.) Mill. can inhibit the progression of cancer through the modulation of cancer-related metabolic signaling pathways. We analyzed a panel of 13 inducible luciferase reporter gene vectors which expression is driven by enhancer elements that bind to specific transcription factors for the evaluation of the activity of cancer signaling pathways. The root extract of P. patens exhibited strong inhibition of several signaling pathways in HeLa cells, a cervical cancer cell line, and was found to be the most potent in inhibiting the activation of Stat3, Smad, AP-1, NF-κB, MYC, Ets, Wnt and Hdghog, at a concentration of 40 µg/mL. The methanolic extracts of P. patens enhanced apoptotic death, deregulated cellular proliferation, differentiation, and progression towards the neoplastic phenotype by altering key signaling molecules required for cell cycle progression. This is the first study to report the influence of Pulsatilla species on cancer signaling pathways. Further, our detailed phytochemical analysis of the methanolic extracts of the P. patens allowed to deduce that compounds, which strongly suppressed the growth and proliferation of HeLa cancer cells were mainly triterpenoid saponins accompanied by phenolic acids.


The Breast ◽  
2013 ◽  
Vol 22 (4) ◽  
pp. 411-418 ◽  
Author(s):  
Orit Kaidar-Person ◽  
Christine Lai ◽  
Abraham Kuten ◽  
Yazid Belkacemi

2018 ◽  
Vol 18 (4) ◽  
pp. 328-336 ◽  
Author(s):  
Shirin Eyvazi ◽  
Bahram Kazemi ◽  
Siavoush Dastmalchi ◽  
Mojgan Bandehpour

CD24 (cluster of differentiation 24) is a small heavy glycosylated protein, which is overexpressed in many cancer and some cancer stem cells and is associated with the development, invasion, and metastasis of cancer cells. The exact role of CD24 in these processes is not fully understood, however, in this article, it has been tried to present a collection of cancer-related mechanisms attributed to CD24. Based on the literature, CD24 dis-regulates different signaling pathways in various cancer cells, including; Src kinases, STAT3, EGFR, Wnt/β-catenin and MAPK. Src kinases play an important role in the signaling pathways which activate p38 MAPK and STAT3 pathways. Akt and ERK are downstream effectors of CD24-activated EGFR, which promote cell proliferation, invasion and metastasis. CD24 increases the expression of HER2 by the activation of NF-κB transcription factor. Moreover, CD24 up-regulates the expression of miR-21 oncomir through the activation of Src kinases. Identification of the details of these pathways and also new pathways will help researchers to explore new CD24 targeted therapies.


2019 ◽  
Vol 35 (19) ◽  
pp. 3709-3717 ◽  
Author(s):  
Lei Huang ◽  
David Brunell ◽  
Clifford Stephan ◽  
James Mancuso ◽  
Xiaohui Yu ◽  
...  

Abstract Motivation Drug combinations that simultaneously suppress multiple cancer driver signaling pathways increase therapeutic options and may reduce drug resistance. We have developed a computational systems biology tool, DrugComboExplorer, to identify driver signaling pathways and predict synergistic drug combinations by integrating the knowledge embedded in vast amounts of available pharmacogenomics and omics data. Results This tool generates driver signaling networks by processing DNA sequencing, gene copy number, DNA methylation and RNA-seq data from individual cancer patients using an integrated pipeline of algorithms, including bootstrap aggregating-based Markov random field, weighted co-expression network analysis and supervised regulatory network learning. It uses a systems pharmacology approach to infer the combinatorial drug efficacies and synergy mechanisms through drug functional module-induced regulation of target expression analysis. Application of our tool on diffuse large B-cell lymphoma and prostate cancer demonstrated how synergistic drug combinations can be discovered to inhibit multiple driver signaling pathways. Compared with existing computational approaches, DrugComboExplorer had higher prediction accuracy based on in vitro experimental validation and probability concordance index. These results demonstrate that our network-based drug efficacy screening approach can reliably prioritize synergistic drug combinations for cancer and uncover potential mechanisms of drug synergy, warranting further studies in individual cancer patients to derive personalized treatment plans. Availability and implementation DrugComboExplorer is available at https://github.com/Roosevelt-PKU/drugcombinationprediction. Supplementary information Supplementary data are available at Bioinformatics online.


Tumor Biology ◽  
2017 ◽  
Vol 39 (2) ◽  
pp. 101042831769168 ◽  
Author(s):  
Siying Zhou ◽  
Sijie Zhang ◽  
Hongyu Shen ◽  
Wei Chen ◽  
Hanzi Xu ◽  
...  

Curcumin, a major yellow pigment and spice in turmeric and curry, is a powerful anti-cancer agent. The anti-tumor activities of curcumin include inhibition of tumor proliferation, angiogenesis, invasion and metastasis, induction of tumor apoptosis, increase of chemotherapy sensitivity, and regulation of cell cycle and cancer stem cell, indicating that curcumin maybe a strong therapeutic potential through modulating various cancer progression. It has been reported that microRNAs as small noncoding RNA molecules are related to cancer progression, which can be regulated by curcumin. Dysregulated microRNAs play vital roles in tumor biology via regulating expressions of target genes and then influencing multiple cancer-related signaling pathways. In this review, we focused on the inhibition effect of curcumin on various cancer progression by regulating expression of multiple microRNAs. Curcumin-induced dysregulation of microRNAs may activate or inactivate a set of signaling pathways, such as Akt, Bcl-2, PTEN, p53, Notch, and Erbb signaling pathways. A better understanding of the relation between curcumin and microRNAs may provide a potential therapeutic target for various cancers.


Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2798
Author(s):  
Alexander Tishchenko ◽  
Daniel D. Azorín ◽  
Laia Vidal-Brime ◽  
María José Muñoz ◽  
Pol Jiménez Arenas ◽  
...  

Connexin 43 (Cx43) forms gap junctions that mediate the direct intercellular diffusion of ions and small molecules between adjacent cells. Cx43 displays both pro- and anti-tumorigenic properties, but the mechanisms underlying these characteristics are not fully understood. Tunneling nanotubes (TNTs) are long and thin membrane projections that connect cells, facilitating the exchange of not only small molecules, but also larger proteins, organelles, bacteria, and viruses. Typically, TNTs exhibit increased formation under conditions of cellular stress and are more prominent in cancer cells, where they are generally thought to be pro-metastatic and to provide growth and survival advantages. Cx43 has been described in TNTs, where it is thought to regulate small molecule diffusion through gap junctions. Here, we developed a high-fidelity CRISPR/Cas9 system to knockout (KO) Cx43. We found that the loss of Cx43 expression was associated with significantly reduced TNT length and number in breast cancer cell lines. Notably, secreted factors present in conditioned medium stimulated TNTs more potently when derived from Cx43-expressing cells than from KO cells. Moreover, TNT formation was significantly induced by the inhibition of several key cancer signaling pathways that both regulate Cx43 and are regulated by Cx43, including RhoA kinase (ROCK), protein kinase A (PKA), focal adhesion kinase (FAK), and p38. Intriguingly, the drug-induced stimulation of TNTs was more potent in Cx43 KO cells than in wild-type (WT) cells. In conclusion, this work describes a novel non-canonical role for Cx43 in regulating TNTs, identifies key cancer signaling pathways that regulate TNTs in this setting, and provides mechanistic insight into a pro-tumorigenic role of Cx43 in cancer.


Sign in / Sign up

Export Citation Format

Share Document