scholarly journals A novel carcinogenic PI3Kα mutation suggesting the role of helical domain in transmitting nSH2 regulatory signals to kinase domain

Life Sciences ◽  
2020 ◽  
pp. 118759
Author(s):  
Safoura Ghalamkari ◽  
Shahryar Alavi ◽  
Hamidreza Mianesaz ◽  
Farinaz Khosravian ◽  
Amir Bahreini ◽  
...  
Keyword(s):  
2020 ◽  
Author(s):  
Safoura Ghalamkari ◽  
Shahryar Alavi ◽  
Hamidreza Mianesaz ◽  
Farinaz Khosravian ◽  
Amir Bahreini ◽  
...  

Abstract Background Mutations in PIK3CA, which encodes p110 subunit of PI3K class IA enzyme, are highly frequent in breast cancer. Here, we aimed to probe mutations in exon 9 of PIK3CA and computationally simulate their function. Method PCR/HRM and PCR/sequencing were used for mutation detection in 40 breast cancer specimens. The identified mutations were queried via in silico algorithms to check the pathogenicity. The molecular dynamics (MD) simulations were utilized to assess the function of mutant proteins. Result Three samples were found to harbor at least one of the E542K, E545K and L551Q mutations of which L511Q has not been reported previously. All mutations were confirmed to be pathogenic and MD simulations revealed their impact on protein function and regulation. The novel L551Q mutant dynamics was similar to that of previously found carcinogenic mutants, E542K and E545K. A functional role for the helical domain was also suggested by which the inhibitory signal of p85α is conducted to kinase domain via helical domain. Helical domain mutations lead to impairment of kinase domain allosteric regulation. Interestingly, our results show that p110α substrate binding pocket of helical domain in mutants may have differential affinity for enzyme substrates, including anit-p110α drugs. Conclusion The novel p110α L551Q mutation could has carcinogenic feature similar to previously known mutations.


2019 ◽  
Author(s):  
Safoura Ghalamkari ◽  
Sayed Shahryar Alavi Hejazi ◽  
Hamidreza Mianesaz ◽  
Farinaz Khosravian ◽  
Amir Bahreini ◽  
...  

Abstract Background Mutations in PIK3CA, which encodes p110 subunit of PI3K class IA enzyme, are highly frequent in breast cancer. Here, we aimed to probe mutations in exon 9 of PIK3CA and computationally simulate their function. Method PCR/HRM and PCR/sequencing were used for mutation detection in 40 breast cancer specimens. The identified mutations were queried via in silico algorithms to check the pathogenicity. The molecular dynamics (MD) simulations were utilized to assess the function of mutant proteins. Result Three samples were found to harbor at least one of the E542K, E545K and L551Q mutations of which L511Q has not been reported previously. All mutations were confirmed to be pathogenic and MD simulations revealed their impact on protein function and regulation. The novel L551Q mutant dynamics was similar to that of previously found carcinogenic mutants, E542K and E545K. A functional role for the helical domain was also suggested by which the inhibitory signal of p85α is conducted to kinase domain via helical domain. Helical domain mutations lead to impairment of kinase domain allosteric regulation. Interestingly, our results show that p110α substrate binding pocket of helical domain in mutants may have differential affinity for enzyme substrates, including anit-p110α drugs. Conclusion The novel p110α L551Q mutation could has carcinogenic feature similar to previously known mutations.


2020 ◽  
Author(s):  
Safoura Ghalamkari ◽  
Shahryar Alavi ◽  
Hamidreza Mianesaz ◽  
Farinaz Khosravian ◽  
Amir Bahreini ◽  
...  

Abstract Background Mutations in PIK3CA, which encodes p110 subunit of PI3K class IA enzyme, are highly frequent in breast cancer. Here, we aimed to probe mutations in exon 9 of PIK3CA and computationally simulate their function. Method PCR/HRM and PCR/sequencing were used for mutation detection in 40 breast cancer specimens. The identified mutations were queried via in silico algorithms to check the pathogenicity. The molecular dynamics (MD) simulations were utilized to assess the function of mutant proteins. Result Three samples were found to harbor at least one of the E542K, E545K and L551Q mutations of which L511Q has not been reported previously. All mutations were confirmed to be pathogenic and MD simulations revealed their impact on protein function and regulation. The novel L551Q mutant dynamics was similar to that of previously found carcinogenic mutants, E542K and E545K. A functional role for the helical domain was also suggested by which the inhibitory signal of p85α is conducted to kinase domain via helical domain. Helical domain mutations lead to impairment of kinase domain allosteric regulation. Interestingly, our results show that p110α substrate binding pocket of helical domain in mutants may have differential affinity for enzyme substrates, including anit-p110α drugs. Conclusion The novel p110α L551Q mutation could has carcinogenic feature similar to previously known mutations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hongseok Yoo ◽  
Yunjoo Im ◽  
Ryoung-Eun Ko ◽  
Jin Young Lee ◽  
Junseon Park ◽  
...  

AbstractThe role of high-mobility group box-1 (HMGB1) in outcome prediction in sepsis is controversial. Furthermore, its association with necroptosis, a programmed cell necrosis mechanism, is still unclear. The purpose of this study is to identify the association between the plasma levels of HMGB1 and the severity and clinical outcomes of sepsis, and to examine the correlation between HMGB1 and key executors of necroptosis including receptor-interacting kinase 3 (RIPK3) and mixed lineage kinase domain-like- (MLKL) proteins. Plasma HMGB1, RIPK3, and MLKL levels were measured with the enzyme-linked immunosorbent assay from the derivation cohort of 188 prospectively enrolled, critically-ill patients between April 2014 and December 2016, and from the validation cohort of 77 patients with sepsis between January 2017 and January 2019. In the derivation cohort, the plasma HMGB1 levels of the control (n = 46, 24.5%), sepsis (n = 58, 30.9%), and septic shock (n = 84, 44.7%) groups were significantly increased (P < 0.001). A difference in mortality between high (≥ 5.9 ng/mL) and low (< 5.9 ng/mL) HMGB1 levels was observed up to 90 days (Log-rank test, P = 0.009). There were positive linear correlations of plasma HMGB1 with RIPK3 (R2 = 0.61, P < 0.001) and MLKL (R2 = 0.7890, P < 0.001). The difference in mortality and correlation of HMGB1 levels with RIPK3 and MLKL were confirmed in the validation cohort. Plasma levels of HMGB1 were associated with the severity and mortality attributed to sepsis. They were correlated with RIPK3 and MLKL, thus suggesting an association of HMGB1 with necroptosis.


2009 ◽  
Vol 29 (12) ◽  
pp. 3367-3378 ◽  
Author(s):  
Scott A. Robertson ◽  
Rositsa I. Koleva ◽  
Lawrence S. Argetsinger ◽  
Christin Carter-Su ◽  
Jarrod A. Marto ◽  
...  

ABSTRACT Jak2, the cognate tyrosine kinase for numerous cytokine receptors, undergoes multisite phosphorylation during cytokine stimulation. To understand the role of phosphorylation in Jak2 regulation, we used mass spectrometry to identify numerous Jak2 phosphorylation sites and characterize their significance for Jak2 function. Two sites outside of the tyrosine kinase domain, Tyr317 in the FERM domain and Tyr637 in the JH2 domain, exhibited strong regulation of Jak2 activity. Mutation of Tyr317 promotes increased Jak2 activity, and the phosphorylation of Tyr317 during cytokine signaling requires prior activation loop phosphorylation, which is consistent with a role for Tyr317 in the feedback inhibition of Jak2 kinase activity after receptor stimulation. Comparison to several previously identified regulatory phosphorylation sites on Jak2 revealed a dominant role for Tyr317 in the attenuation of Jak2 signaling. In contrast, mutation of Tyr637 decreased Jak2 signaling and activity and partially suppressed the activating JH2 V617F mutation, suggesting a role for Tyr637 phosphorylation in the release of JH2 domain-mediated suppression of Jak2 kinase activity during cytokine stimulation. The phosphorylation of Tyr317 and Tyr637 act in concert with other regulatory events to maintain appropriate control of Jak2 activity and cytokine signaling.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1690
Author(s):  
Louise Pinet ◽  
Nadine Assrir ◽  
Carine van Heijenoort

ErbBs are receptor tyrosine kinases involved not only in development, but also in a wide variety of diseases, particularly cancer. Their extracellular, transmembrane, juxtamembrane, and kinase folded domains were described extensively over the past 20 years, structurally and functionally. However, their whole C-terminal tails (CTs) following the kinase domain were only described at atomic resolution in the last 4 years. They were shown to be intrinsically disordered. The CTs are known to be tyrosine-phosphorylated when the activated homo- or hetero-dimers of ErbBs are formed. Their phosphorylation triggers interaction with phosphotyrosine binding (PTB) or Src Homology 2 (SH2) domains and activates several signaling pathways controling cellular motility, proliferation, adhesion, and apoptosis. Beyond this passive role of phosphorylated domain and site display for partners, recent structural and function studies unveiled active roles in regulation of phosphorylation and interaction: the CT regulates activity of the kinase domain; different phosphorylation states have different compaction levels, potentially modulating the succession of phosphorylation events; and prolines have an important role in structure, dynamics, and possibly regulatory interactions. Here, we review both the canonical role of the disordered CT domains of ErbBs as phosphotyrosine display domains and the recent findings that expand the known range of their regulation functions linked to specific structural and dynamic features.


2018 ◽  
Vol 115 (9) ◽  
pp. E2001-E2009 ◽  
Author(s):  
Huyan Meng ◽  
Zhen Liu ◽  
Xingyan Li ◽  
Huibing Wang ◽  
Taijie Jin ◽  
...  

RIPK1 is a critical mediator of cell death and inflammation downstream of TNFR1 upon stimulation by TNFα, a potent proinflammatory cytokine involved in a multitude of human inflammatory and degenerative diseases. RIPK1 contains an N-terminal kinase domain, an intermediate domain, and a C-terminal death domain (DD). The kinase activity of RIPK1 promotes cell death and inflammation. Here, we investigated the involvement of RIPK1-DD in the regulation of RIPK1 kinase activity. We show that a charge-conserved mutation of a lysine located on the surface of DD (K599R in human RIPK1 or K584R in murine RIPK1) blocks RIPK1 activation in necroptosis and RIPK1-dependent apoptosis and the formation of complex II. Ripk1K584R/K584R knockin mutant cells are resistant to RIPK1 kinase-dependent apoptosis and necroptosis. The resistance of K584R cells, however, can be overcome by forced dimerization of RIPK1. Finally, we show that the K584R RIPK1 knockin mutation protects mice against TNFα-induced systematic inflammatory response syndrome. Our study demonstrates the role of RIPK1-DD in mediating RIPK1 dimerization and activation of its kinase activity during necroptosis and RIPK1-dependent apoptosis.


Author(s):  
Chandrika N. Deshpande ◽  
Aaron P. McGrath ◽  
Josep Font ◽  
Amy P. Guilfoyle ◽  
Megan J. Maher ◽  
...  

FeoB is a transmembrane protein involved in ferrous iron uptake in prokaryotic organisms. FeoB comprises a cytoplasmic soluble domain termed NFeoB and a C-terminal polytopic transmembrane domain. Recent structures of NFeoB have revealed two structural subdomains: a canonical GTPase domain and a five-helix helical domain. The GTPase domain hydrolyses GTP to GDP through a well characterized mechanism, a process which is required for Fe2+transport. In contrast, the precise role of the helical domain has not yet been fully determined. Here, the structure of the cytoplasmic domain of FeoB fromGallionella capsiferriformansis reported. Unlike recent structures of NFeoB, theG. capsiferriformansNFeoB structure is highly unusual in that it does not contain a helical domain. The crystal structures of both apo and GDP-bound protein forms a domain-swapped dimer.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yasir Mohamud ◽  
Junyan Shi ◽  
Hui Tang ◽  
Pinhao Xiang ◽  
Yuan Chao Xue ◽  
...  

Abstract Coxsackievirus B3 (CVB3) is a single-stranded positive RNA virus that usurps cellular machinery, including the evolutionarily anti-viral autophagy pathway, for productive infections. Despite the emergence of double-membraned autophagosome-like vesicles during CVB3 infection, very little is known about the mechanism of autophagy initiation. In this study, we investigated the role of established autophagy factors in the initiation of CVB3-induced autophagy. Using siRNA-mediated gene-silencing and CRISPR-Cas9-based gene-editing in culture cells, we discovered that CVB3 bypasses the ULK1/2 and PI3K complexes to trigger autophagy. Moreover, we found that CVB3-induced LC3 lipidation occurred independent of WIPI2 and the transmembrane protein ATG9 but required components of the late-stage ubiquitin-like ATG conjugation system including ATG5 and ATG16L1. Remarkably, we showed the canonical autophagy factor ULK1 was cleaved through the catalytic activity of the viral proteinase 3C. Mutagenesis experiments identified the cleavage site of ULK1 after Q524, which separates its N-terminal kinase domain from C-terminal substrate binding domain. Finally, we uncovered PI4KIIIβ (a PI4P kinase), but not PI3P or PI5P kinases as requisites for CVB3-induced LC3 lipidation. Taken together, our studies reveal that CVB3 initiates a non-canonical form of autophagy that bypasses ULK1/2 and PI3K signaling pathways to ultimately converge on PI4KIIIβ- and ATG5–ATG12–ATG16L1 machinery.


Sign in / Sign up

Export Citation Format

Share Document