scholarly journals Coxsackievirus infection induces a non-canonical autophagy independent of the ULK and PI3K complexes

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yasir Mohamud ◽  
Junyan Shi ◽  
Hui Tang ◽  
Pinhao Xiang ◽  
Yuan Chao Xue ◽  
...  

Abstract Coxsackievirus B3 (CVB3) is a single-stranded positive RNA virus that usurps cellular machinery, including the evolutionarily anti-viral autophagy pathway, for productive infections. Despite the emergence of double-membraned autophagosome-like vesicles during CVB3 infection, very little is known about the mechanism of autophagy initiation. In this study, we investigated the role of established autophagy factors in the initiation of CVB3-induced autophagy. Using siRNA-mediated gene-silencing and CRISPR-Cas9-based gene-editing in culture cells, we discovered that CVB3 bypasses the ULK1/2 and PI3K complexes to trigger autophagy. Moreover, we found that CVB3-induced LC3 lipidation occurred independent of WIPI2 and the transmembrane protein ATG9 but required components of the late-stage ubiquitin-like ATG conjugation system including ATG5 and ATG16L1. Remarkably, we showed the canonical autophagy factor ULK1 was cleaved through the catalytic activity of the viral proteinase 3C. Mutagenesis experiments identified the cleavage site of ULK1 after Q524, which separates its N-terminal kinase domain from C-terminal substrate binding domain. Finally, we uncovered PI4KIIIβ (a PI4P kinase), but not PI3P or PI5P kinases as requisites for CVB3-induced LC3 lipidation. Taken together, our studies reveal that CVB3 initiates a non-canonical form of autophagy that bypasses ULK1/2 and PI3K signaling pathways to ultimately converge on PI4KIIIβ- and ATG5–ATG12–ATG16L1 machinery.

2020 ◽  
Vol 22 (1) ◽  
pp. 323
Author(s):  
Ramesh Kumar ◽  
Divya Mehta ◽  
Nimisha Mishra ◽  
Debasis Nayak ◽  
Sujatha Sunil

Being opportunistic intracellular pathogens, viruses are dependent on the host for their replication. They hijack host cellular machinery for their replication and survival by targeting crucial cellular physiological pathways, including transcription, translation, immune pathways, and apoptosis. Immediately after translation, the host and viral proteins undergo a process called post-translational modification (PTM). PTMs of proteins involves the attachment of small proteins, carbohydrates/lipids, or chemical groups to the proteins and are crucial for the proteins’ functioning. During viral infection, host proteins utilize PTMs to control the virus replication, using strategies like activating immune response pathways, inhibiting viral protein synthesis, and ultimately eliminating the virus from the host. PTM of viral proteins increases solubility, enhances antigenicity and virulence properties. However, RNA viruses are devoid of enzymes capable of introducing PTMs to their proteins. Hence, they utilize the host PTM machinery to promote their survival. Proteins from viruses belonging to the family: Togaviridae, Flaviviridae, Retroviridae, and Coronaviridae such as chikungunya, dengue, zika, HIV, and coronavirus are a few that are well-known to be modified. This review discusses various host and virus-mediated PTMs that play a role in the outcome during the infection.


2021 ◽  
Vol 9 (8) ◽  
pp. 1605
Author(s):  
Yuan-Pin Hung ◽  
Ching-Chi Lee ◽  
Jen-Chieh Lee ◽  
Pei-Jane Tsai ◽  
Wen-Chien Ko

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an RNA virus of the family Coronaviridae, causes coronavirus disease 2019 (COVID-19), an influenza-like disease that chiefly infects the lungs through respiratory transmission. The spike protein of SARS-CoV-2, a transmembrane protein in its outer portion, targets angiotensin-converting enzyme 2 (ACE2) as the binding receptor for the cell entry. As ACE2 is highly expressed in the gut and pulmonary tissues, SARS-CoV-2 infections frequently result in gastrointestinal inflammation, with presentations ordinarily ranging from intestinal cramps to complications with intestinal perforations. However, the evidence detailing successful therapy for gastrointestinal involvement in COVID-19 patients is currently limited. A significant change in fecal microbiomes, namely dysbiosis, was characterized by the enrichment of opportunistic pathogens and the depletion of beneficial commensals and their crucial association to COVID-19 severity has been evidenced. Oral probiotics had been evidenced to improve gut health in achieving homeostasis by exhibiting their antiviral effects via the gut–lung axis. Although numerous commercial probiotics have been effective against coronavirus, their efficacies in treating COVID-19 patients remain debated. In ClinicalTrials.gov, 19 clinical trials regarding the dietary supplement of probiotics, in terms of Lactobacillus and mixtures of Bifidobacteria and Lactobacillus, for treating COVID-19 cases are ongoing. Accordingly, the preventive or therapeutic role of probiotics for COVID-19 patients can be elucidated in the near future.


2020 ◽  
Author(s):  
Azia S. Evans ◽  
Nicholas J. Lennemann ◽  
Carolyn B. Coyne

AbstractAutophagy is a degradative cellular pathway that targets cytoplasmic contents and organelles for turnover by the lysosome. Various autophagy pathways play key roles in the clearance of viral infections, and many families of viruses have developed unique methods for avoiding degradation. Some positive stranded RNA viruses, such as enteroviruses and flaviviruses, usurp the autophagic pathway to promote their own replication. We previously identified the endoplasmic reticulum-localized protein BPIFB3 as an important regulator of non-canonical autophagy that uniquely impacts the replication of enteroviruses and flaviviruses. Here, we find that many components of the canonical autophagy machinery are not required for BPIFB3-regulated autophagy and identify the host factors that facilitate its role in the replication of enteroviruses and flaviviruses. Using proximity-dependent biotinylation (BioID) followed by mass spectrometry, we identify ARFGAP1 and TMED9 as two cellular components that interact with BPIFB3 to regulate autophagy and viral replication. Importantly, our data demonstrate that non-canonical autophagy in mammalian cells can be controlled outside of the traditional pathway regulators and define the role of two proteins in BPIFB3-mediated non-canonical autophagy.Summary StatementBPIFB3 is a regulator of a non-canonical cellular autophagy pathway that impacts the replication of enteroviruses and flaviviruses. Here we define ARFGAP1 and TMED9 as essential components of this pathway.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2547
Author(s):  
Keunsoo Kang ◽  
Yoonjung Choi ◽  
Hyeonjin Moon ◽  
Chaelin You ◽  
Minjin Seo ◽  
...  

RAD51 is a recombinase that plays a pivotal role in homologous recombination. Although the role of RAD51 in homologous recombination has been extensively studied, it is unclear whether RAD51 can be involved in gene regulation as a co-factor. In this study, we found evidence that RAD51 may contribute to the regulation of genes involved in the autophagy pathway with E-box proteins such as USF1, USF2, and/or MITF in GM12878, HepG2, K562, and MCF-7 cell lines. The canonical USF binding motif (CACGTG) was significantly identified at RAD51-bound cis-regulatory elements in all four cell lines. In addition, genome-wide USF1, USF2, and/or MITF-binding regions significantly coincided with the RAD51-associated cis-regulatory elements in the same cell line. Interestingly, the promoters of genes associated with the autophagy pathway, such as ATG3 and ATG5, were significantly occupied by RAD51 and regulated by RAD51 in HepG2 and MCF-7 cell lines. Taken together, these results unveiled a novel role of RAD51 and provided evidence that RAD51-associated cis-regulatory elements could possibly be involved in regulating autophagy-related genes with E-box binding proteins.


2006 ◽  
Vol 203 (7) ◽  
pp. 1795-1803 ◽  
Author(s):  
Himanshu Kumar ◽  
Taro Kawai ◽  
Hiroki Kato ◽  
Shintaro Sato ◽  
Ken Takahashi ◽  
...  

IFN-β promoter stimulator (IPS)-1 was recently identified as an adapter for retinoic acid–inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (Mda5), which recognize distinct RNA viruses. Here we show the critical role of IPS-1 in antiviral responses in vivo. IPS-1–deficient mice showed severe defects in both RIG-I– and Mda5-mediated induction of type I interferon and inflammatory cytokines and were susceptible to RNA virus infection. RNA virus–induced interferon regulatory factor-3 and nuclear factor κB activation was also impaired in IPS-1–deficient cells. IPS-1, however, was not essential for the responses to either DNA virus or double-stranded B-DNA. Thus, IPS-1 is the sole adapter in both RIG-I and Mda5 signaling that mediates effective responses against a variety of RNA viruses.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hongseok Yoo ◽  
Yunjoo Im ◽  
Ryoung-Eun Ko ◽  
Jin Young Lee ◽  
Junseon Park ◽  
...  

AbstractThe role of high-mobility group box-1 (HMGB1) in outcome prediction in sepsis is controversial. Furthermore, its association with necroptosis, a programmed cell necrosis mechanism, is still unclear. The purpose of this study is to identify the association between the plasma levels of HMGB1 and the severity and clinical outcomes of sepsis, and to examine the correlation between HMGB1 and key executors of necroptosis including receptor-interacting kinase 3 (RIPK3) and mixed lineage kinase domain-like- (MLKL) proteins. Plasma HMGB1, RIPK3, and MLKL levels were measured with the enzyme-linked immunosorbent assay from the derivation cohort of 188 prospectively enrolled, critically-ill patients between April 2014 and December 2016, and from the validation cohort of 77 patients with sepsis between January 2017 and January 2019. In the derivation cohort, the plasma HMGB1 levels of the control (n = 46, 24.5%), sepsis (n = 58, 30.9%), and septic shock (n = 84, 44.7%) groups were significantly increased (P < 0.001). A difference in mortality between high (≥ 5.9 ng/mL) and low (< 5.9 ng/mL) HMGB1 levels was observed up to 90 days (Log-rank test, P = 0.009). There were positive linear correlations of plasma HMGB1 with RIPK3 (R2 = 0.61, P < 0.001) and MLKL (R2 = 0.7890, P < 0.001). The difference in mortality and correlation of HMGB1 levels with RIPK3 and MLKL were confirmed in the validation cohort. Plasma levels of HMGB1 were associated with the severity and mortality attributed to sepsis. They were correlated with RIPK3 and MLKL, thus suggesting an association of HMGB1 with necroptosis.


2021 ◽  
Vol 22 (5) ◽  
pp. 2732
Author(s):  
Nadine Reichhart ◽  
Vladimir M. Milenkovic ◽  
Christian H. Wetzel ◽  
Olaf Strauß

The anoctamin (TMEM16) family of transmembrane protein consists of ten members in vertebrates, which act as Ca2+-dependent ion channels and/or Ca2+-dependent scramblases. ANO4 which is primarily expressed in the CNS and certain endocrine glands, has been associated with various neuronal disorders. Therefore, we focused our study on prioritizing missense mutations that are assumed to alter the structure and stability of ANO4 protein. We employed a wide array of evolution and structure based in silico prediction methods to identify potentially deleterious missense mutations in the ANO4 gene. Identified pathogenic mutations were then mapped to the modeled human ANO4 structure and the effects of missense mutations were studied on the atomic level using molecular dynamics simulations. Our data show that the G80A and A500T mutations significantly alter the stability of the mutant proteins, thus providing new perspective on the role of missense mutations in ANO4 gene. Results obtained in this study may help to identify disease associated mutations which affect ANO4 protein structure and function and might facilitate future functional characterization of ANO4.


2008 ◽  
Vol 82 (9) ◽  
pp. 4461-4470 ◽  
Author(s):  
Ranjit Warrier ◽  
Benjamin R. Linger ◽  
Barbara L. Golden ◽  
Richard J. Kuhn

ABSTRACT Sindbis virus is an enveloped positive-sense RNA virus in the alphavirus genus. The nucleocapsid core contains the genomic RNA surrounded by 240 copies of a single capsid protein. The capsid protein is multifunctional, and its roles include acting as a protease, controlling the specificity of RNA that is encapsidated into nucleocapsid cores, and interacting with viral glycoproteins to promote the budding of mature virus and the release of the genomic RNA into the newly infected cell. The region comprising amino acids 81 to 113 was previously implicated in two processes, the encapsidation of the viral genomic RNA and the stable accumulation of nucleocapsid cores in the cytoplasm of infected cells. In the present study, specific amino acids within this region responsible for the encapsidation of the genomic RNA have been identified. The region that is responsible for nucleocapsid core accumulation has considerable overlap with the region that controls encapsidation specificity.


2009 ◽  
Vol 29 (12) ◽  
pp. 3367-3378 ◽  
Author(s):  
Scott A. Robertson ◽  
Rositsa I. Koleva ◽  
Lawrence S. Argetsinger ◽  
Christin Carter-Su ◽  
Jarrod A. Marto ◽  
...  

ABSTRACT Jak2, the cognate tyrosine kinase for numerous cytokine receptors, undergoes multisite phosphorylation during cytokine stimulation. To understand the role of phosphorylation in Jak2 regulation, we used mass spectrometry to identify numerous Jak2 phosphorylation sites and characterize their significance for Jak2 function. Two sites outside of the tyrosine kinase domain, Tyr317 in the FERM domain and Tyr637 in the JH2 domain, exhibited strong regulation of Jak2 activity. Mutation of Tyr317 promotes increased Jak2 activity, and the phosphorylation of Tyr317 during cytokine signaling requires prior activation loop phosphorylation, which is consistent with a role for Tyr317 in the feedback inhibition of Jak2 kinase activity after receptor stimulation. Comparison to several previously identified regulatory phosphorylation sites on Jak2 revealed a dominant role for Tyr317 in the attenuation of Jak2 signaling. In contrast, mutation of Tyr637 decreased Jak2 signaling and activity and partially suppressed the activating JH2 V617F mutation, suggesting a role for Tyr637 phosphorylation in the release of JH2 domain-mediated suppression of Jak2 kinase activity during cytokine stimulation. The phosphorylation of Tyr317 and Tyr637 act in concert with other regulatory events to maintain appropriate control of Jak2 activity and cytokine signaling.


Sign in / Sign up

Export Citation Format

Share Document