scholarly journals Mechanobiology of Periodontal Ligament Stem Cells in Orthodontic Tooth Movement

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Huaming Huang ◽  
Ruili Yang ◽  
Yan-heng Zhou

Periodontal ligament stem cells (PDLSCs) possess self-renewal, multilineage differentiation, and immunomodulatory properties. They play a crucial role in maintaining periodontal homeostasis and also participated in orthodontic tooth movement (OTM). Various studies have applied controlled mechanical stimulation to PDLSCs and investigated the effects of orthodontic force on PDLSCs. Physical stimuli can regulate the proliferation and differentiation of PDLSCs. During the past decade, a variety of studies has demonstrated that applied forces can activate different signaling pathways in PDLSCs, including MAPK, TGF-β/Smad, and Wnt/β-catenin pathways. Besides, recent advances have highlighted the critical role of orthodontic force in PDLSC fate through mediators, such as IL-11, CTHRC1, miR-21, and H2S. This perspective review critically discusses the PDLSC fate to physical forcein vitroand orthodontic forcein vivo, as well as the underlying molecular mechanism involved in OTM.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Lihua Yin ◽  
Wenxiao Cheng ◽  
Zishun Qin ◽  
Hongdou Yu ◽  
Zhanhai Yu ◽  
...  

This study is to explore the osteogenesis potential of the human periodontal ligament stem cells (hPDLSCs) induced by naringin in vitro and in vitro. The results confirmed that 1 μM naringin performs the best effect and a collection of bone-related genes (RUNX2,COL1A2, OPN, and OCN) had significantly higher expression levels compared to the control group. Furthermore, a typical trabecular structure was observed in vivo, surrounded by a large amount of osteoblasts. These results demonstrated that naringin, at a concentration of 1 μM, can efficiently promote the proliferation and differentiation of hPDLSCs both in vitro and in vivo.


2003 ◽  
Vol 82 (8) ◽  
pp. 646-651 ◽  
Author(s):  
I. Takahashi ◽  
M. Nishimura ◽  
K. Onodera ◽  
J.-W. Bae ◽  
H. Mitani ◽  
...  

Periodontal ligament tissue is remodeled on both the tension and compression sides of moving teeth during orthodontic tooth movement. The present study was designed to clarify the hypothesis that the expression of MMP-8 and MMP-13 mRNA is promoted during the remodeling of periodontal ligament tissue in orthodontic tooth movement. We used the in situ hybridization method and semi-quantitative reverse-transcription/polymerase chain-reaction analysis to elucidate the gene expression of MMP-8 and MMP-13 mRNA. Expression of MMP-8 and MMP-13 mRNA transiently increased on both the compression and tension sides during active tooth movement in vivo. The gene expression of MMP-8 and MMP-13 was induced by tension, while compression indirectly promoted the gene expression of MMP-8 and MMP-13 through soluble factors in vitro. Thus, we concluded that the expression of MMP-8 and MMP-13 is differentially regulated by tension and compression, and plays an important role in the remodeling of the periodontal ligament.


2015 ◽  
Vol 41 (9) ◽  
pp. 1462-1468 ◽  
Author(s):  
Yoonsun Cha ◽  
Mijeong Jeon ◽  
Hyo-Seol Lee ◽  
Seunghye Kim ◽  
Seong-Oh Kim ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Xue Xiong ◽  
Xiao Yang ◽  
Hongwei Dai ◽  
Gang Feng ◽  
Yuanyuan Zhang ◽  
...  

Abstract Background Human periodontal ligament stem cells (hPDLSCs) are one of the most promising types of seed cells in periodontal tissue regeneration. Suitable biomaterials are additional essential components that must cooperate with seed cells for in vivo expansion or in vitro implantation. Extracellular matrix (ECM) derived from mesenchymal stem cells (MSCs) was recently reported to be a promising substrate with which to culture MSCs that could be applied in biomaterial scaffolds or bioink. Human urine-derived stem cells (hUSCs) have several advantages; their collection is non-invasive and easy, and hUSCs are low in cost, potentially making them a suitable and efficient source of ECM. The purpose of this study was to characterize the biological properties of ECM derived from hUSCs (UECM) and evaluate the effects of UECM on hPDLSCs. Methods hPDLSCs grown on ECM derived from hPDLSCs (PECM) and fibronectin-coated tissue culture plastic (TCP) served as control groups. Both hUSCs and hPDLSCs were seeded on TCP and stimulated to produce ECM. After 8 days of stimulation, the samples were decellularized, leaving only ECM. Then, hPDLSCs were seeded onto UECM-, PECM-, and fibronectin-coated TCP and untreated TCP. Results UECM consists of dense bundles of fibers which contain abundant fibronectin. Both UECM and PECM promoted hPDLSC proliferation, attachment, spreading, and differentiation. Between UECM and PECM, UECM enhanced proliferation, osteogenesis, and angiogenesis to a greater extent. Though fibronectin appeared to be the abundant component of UECM, its performance was inferior to that of UECM. Conclusions Our study provides an original perspective on different cell-specific ECMs and suggests UECM as a suitable biomaterial in which to culture hPDLSCs as UECM enhances their biological functions.


2021 ◽  
Author(s):  
Xun Xi ◽  
Zixuan Li ◽  
Yi Zhao ◽  
Hong Liu ◽  
Shuai Chen ◽  
...  

Abstract Background Biomechanical forces are vital for the regulation of skeletal tissue. Mechanical stretch plays a vital role in osteogenic differentiation of periodontal ligament stem cells (PDLSCs) during orthodontic treatment. Cyclic mechanical stretch may trigger the up-regulated production of reactive oxygen species (ROS). ROS has a critical effect on bone cell function and the pathophysiology of bone diseases. N-acetylcysteine (NAC), a ROS scavenger, possesses powerful antioxidant capacity. The aim of this study was to determine the role of ROS and NAC in PDLSCs during osteogenic differentiation under cyclic mechanical stretch. We further investigated that the therapeutic potential of NAC to improve the changes of the microstructure of alveolar bone during orthodontic tooth movement in rats by micro-CT system. Methods The expression of COL1 (collagen type I), RUNX2 (runt-related transcription factor 2) and OPN (osteopontin) by qRT-PCR and Western blot experiments, and alkaline phosphatase (ALP) staining as well as ALP activity tests were used to examine osteogenic differentiation tendency of PDLSCs subjected to cyclic mechanical stretch of 10% and 0.5Hz deformation induced by the Flexcell tension system. ROS production in PDLSCs were measured under cyclic mechanical stretch by Flow Cytometry. The levels of reduced glutathione (GSH), oxidized GSH (GSSG) and the GSH/GSSG ratio with or without NAC treatment were analyzed. And we evaluated the changes of the microstructure of alveolar bone during orthodontic tooth movement in rats employing micro-CT system. Results NAC treatment could promote the osteogenic differentiation of PDLSCs under cyclic mechanical stretch. Down-regulated ROS generation and the up-regulated level of GSH and the ratio of GSH/GSSG in PDLSCs treated with NAC were observed in response to cyclic mechanical stretch. NAC improved the microstructure of alveolar bone, including BV/TV (bone volume/total volume), Tb.Th (trabecular thickness), Tb.Sp (trabecular separation) and SMI (microstructure model index), during orthodontic tooth movement in rats. Conclusion These results revealed that NAC might be a potential therapeutic approach for the remodeling of the alveolar bone during orthodontic tooth movement.


2021 ◽  
Vol 22 (13) ◽  
pp. 6967
Author(s):  
Christian Behm ◽  
Michael Nemec ◽  
Fabian Weissinger ◽  
Marco Aoqi Rausch ◽  
Oleh Andrukhov ◽  
...  

Background: During orthodontic tooth movement (OTM), applied orthodontic forces cause an extensive remodeling of the extracellular matrix (ECM) in the periodontal ligament (PDL). This is mainly orchestrated by different types of matrix metalloproteinases (MMPs) and their tissue inhibitors of matrix metalloproteinases (TIMPs), which are both secreted by periodontal ligament (PDL) fibroblasts. Multiple in vitro and in vivo studies already investigated the influence of applied orthodontic forces on the expression of MMPs and TIMPs. The aim of this systematic review was to explore the expression levels of MMPs and TIMPs during OTM and the influence of specific orthodontic force-related parameters. Methods: Electronic article search was performed on PubMed and Web of Science until 31 January 2021. Screenings of titles, abstracts and full texts were performed according to PRISMA, whereas eligibility criteria were defined for in vitro and in vivo studies, respectively, according to the PICO schema. Risk of bias assessment for in vitro studies was verified by specific methodological and reporting criteria. For in vivo studies, risk of bias assessment was adapted from the Joanna Briggs Institute Critical Appraisal Checklist for analytical cross-sectional study. Results: Electronic article search identified 3266 records, from which 28 in vitro and 12 in vivo studies were included. The studies showed that orthodontic forces mainly caused increased MMPs and TIMPs expression levels, whereas the exact effect may depend on various intervention and sample parameters and subject characteristics. Conclusion: This systematic review revealed that orthodontic forces induce a significant effect on MMPs and TIMPs in the PDL. This connection may contribute to the controlled depletion and formation of the PDLs’ ECM at the compression and tension site, respectively, and finally to the highly regulated OTM.


2016 ◽  
Vol 366 (2) ◽  
pp. 311-328 ◽  
Author(s):  
Yang Yu ◽  
Chun-Sheng Bi ◽  
Rui-Xin Wu ◽  
Yuan Yin ◽  
Xi-Yu Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document