The dynamics and temperature regime of the crater lakes in the Nevado de Toluca volcano, Mexico

Limnologica ◽  
2021 ◽  
pp. 125938
Author(s):  
Anatoliy Filonov ◽  
María del Refugio Barba-López ◽  
Lydia Ladah ◽  
Iryna Tereshchenko ◽  
Emilio Palacios-Hernández ◽  
...  
Radiocarbon ◽  
2017 ◽  
Vol 59 (6) ◽  
pp. 1705-1712 ◽  
Author(s):  
M A Martínez-Carrillo ◽  
C Solís ◽  
I Hernández Bautista ◽  
R Junco Sánchez ◽  
M Rodríguez-Ceja ◽  
...  

ABSTRACTThe Nevado de Toluca is a stratovolcano located in the southwest of the Toluca Valley in central Mexico. At a height of around 4200 m there are two crater lakes: El Sol and La Luna. Since Precolumbian times, people in the surrounding valleys carried out rituals and deposited offerings into the lakes. After the Spanish conquest, these rituals were kept alive clandestinely. Currently, reminiscent of Mesoamerican rituals subsist. Due to the long duration of the ritual at the Nevado de Toluca, it is important to date the materials recovered in the underwater and terrestrial archaeological explorations. This article proposes a chronology of Prehispanic ritual activities performed in the Nevado de Toluca based on the characterization and radiocarbon (14C) dating performed to materials from the volcano’s lakes.


2015 ◽  
Vol 32 (2) ◽  
pp. 109-116 ◽  
Author(s):  
Krystyna Szeroczyńska ◽  
Edyta Zawisza ◽  
Marta Wojewódka

Abstract The objective of this study was the recognition and reconstruction of the origin of two high altitude lakes and the ecological conditions of their early existence based on subfossil Cladocera and chemical analyses. The study focused on the oldest lacustrine sediments from Lake Sol and Lake Luna, located in the crater of Volcano Nevado de Toluca (Central Mexico). The Nevado de Toluca crater developed approximately 12 ka yr BP. According to the literature, the volcano was last active approximately 3.3 ka yr BP, and the lakes developed after that eruption. The remains of nine Cladocera species were found in the bottom sediments of both lakes. The most dominant taxa were two endemic littoral species: Alona manueli and Iliocryptus nevadensis. The total frequency of Cladocera specimens in both of the sediment cores was very low. No Cladocera remains were recorded in the sediment layer at depths between 123–103 m from Lake Luna. The results of the lithological and geochemical analyses showed that this sediment layer was composed of allochthonous material, probably originating from slid down from the volcanic cone. This was suggested by the content of silica (up to 13%), iron (up to 12%), and titanium (up to 4%). The Cladocera remains recorded in the bottom sediments suggested that both reservoirs developed as freshwater lakes at the beginning of the sedimentation. The calibrated radiocarbon dates obtained for the bottom samples were 4040 to 3990 yr BP for Lake Luna (129 cm) and 4485 to 4485 yr BP for Lake Sol (89 cm). The obtained ages were older than the dates of the last eruption, which occurred approximately 3300 yr BP. This result was likely related to the type of radiocarbon dated materials (charcoals).


1979 ◽  
Vol 46 ◽  
pp. 125-149 ◽  
Author(s):  
David A. Allen

No paper of this nature should begin without a definition of symbiotic stars. It was Paul Merrill who, borrowing on his botanical background, coined the termsymbioticto describe apparently single stellar systems which combine the TiO absorption of M giants (temperature regime ≲ 3500 K) with He II emission (temperature regime ≳ 100,000 K). He and Milton Humason had in 1932 first drawn attention to three such stars: AX Per, CI Cyg and RW Hya. At the conclusion of the Mount Wilson Ha emission survey nearly a dozen had been identified, and Z And had become their type star. The numbers slowly grew, as much because the definition widened to include lower-excitation specimens as because new examples of the original type were found. In 1970 Wackerling listed 30; this was the last compendium of symbiotic stars published.


2015 ◽  
pp. 56-61
Author(s):  
A. V. Kustyshev ◽  
A. V. Krasovskii ◽  
E. S. Zimin ◽  
D. A. Tatarikov

An algorithm has been developed, and a method of calculation of wellhead temperature in gas wells has been realized based on the geologo-technological model. The developed method enables to calculate the forecast process parameters taking into consideration the temperature regime of gas wells. The method was tested using the above mentioned model of the Cenomanian deposit of one of West Siberia fields. The results of these calculations have been later taken into account in designing the deposit development.


Sign in / Sign up

Export Citation Format

Share Document