Early Cretaceous subduction of Paleo-Pacific Ocean in the coastal region of SE China: Petrological and geochemical constraints from the mafic intrusions

Lithos ◽  
2019 ◽  
Vol 334-335 ◽  
pp. 8-24 ◽  
Author(s):  
Bo Zhang ◽  
Feng Guo ◽  
Xiaobing Zhang ◽  
Yangming Wu ◽  
Guoqing Wang ◽  
...  
2017 ◽  
Vol 52 ◽  
pp. 463-475 ◽  
Author(s):  
Yu Huang ◽  
Zhidan Zhao ◽  
Di-Cheng Zhu ◽  
Yunhua Liu ◽  
Dong Liu ◽  
...  

2021 ◽  

Mesozoic plate convergence in SE Sundaland has been a source of debate for decades. A determination of plate convergence boundaries and timing have been explained in many publications, but not all boundaries were associated with magmatism. Through integration of both plate configurations and magmatic deposits, the basement can be accurately characterized over time and areal extents. This paper will discuss Cretaceous subductions and magmatic arc trends in SE Sundaland area with additional evidence found in JS-1 Ridge. At least three subduction trends are captured during the Mesozoic in the study area: 1) Early Jurassic – Early Cretaceous trend of Meratus, 2) Early Cretaceous trend of Bantimala and 3) Late Cretaceous trend in the southernmost study area. The Early Jurassic – Early Cretaceous subduction occurred along the South and East boundary of Sundaland (SW Borneo terrane) and passes through the Meratus area. The Early Cretaceous subduction occurred along South and East boundary of Sundaland (SW Borneo and Paternoster terranes) and pass through the Bantimala area. The Late Cretaceous subduction occurred along South and East boundary of Sundaland (SW Borneo, Paternoster and SE Java – South Sulawesi terranes), but is slightly shifted to the South approaching the Oligocene – Recent subduction zone. Magmatic arc trends can also be generally grouped into three periods, with each period corresponds to the subduction processes at the time. The first magmatic arc (Early Jurassic – Early Cretaceous) is present in core of SW Borneo terrane and partly produces the Schwaner Magmatism. The second Cretaceous magmatic arc (Early Cretaceous) trend is present in the SW Borneo terrane but is slightly shifted southeastward It is responsible for magmatism in North Java offshore, northern JS-1 Ridge and Meratus areas. The third magmatic arc trend is formed by Late Cretaceous volcanic rocks in Luk Ulo, the southern JS-1 Ridge and the eastern Makassar Strait areas. These all occur during the same time within the Cretaceous magmatic arc. Though a mélange rock sample has not been found in JS-1 Ridge area, there is evidence of an accretionary prism in the area as evidenced by the geometry observed on a new 3D seismic dataset. Based on the structural trend of Meratus (NNE-SSW) coupled with the regional plate boundary understanding, this suggests that both Meratus & JS-1 Ridge are part of the same suture zone between SW Borneo and Paternoster terranes. The gradual age transition observed in the JS-1 Ridge area suggests a southward shift of the magmatic arc during Early Cretaceous to Late Cretaceous times.


2019 ◽  
Vol 62 (2) ◽  
pp. 186-209 ◽  
Author(s):  
D. S. Avellaneda-Jiménez ◽  
A. Cardona ◽  
V. Valencia ◽  
J. S. Barbosa ◽  
J. S. Jaramillo ◽  
...  

2013 ◽  
Vol 151 (5) ◽  
pp. 830-849 ◽  
Author(s):  
XIANGHUI LI ◽  
HUGH C. JENKYNS ◽  
CHAOKAI ZHANG ◽  
YIN WANG ◽  
LING LIU ◽  
...  

AbstractLower Cretaceous pedogenic carbonates exposed in SE China have been dated by U–Pb isotope measurements on single zircons taken from intercalated volcanic rocks, and the ages integrated with existing stratigraphy. δ13C values of calcretes range from –7.0‰ to –3.0‰ and can be grouped into five episodes of increasing–decreasing values. The carbon isotope proxy derived from these palaeosol carbonates suggests pCO2 mostly in the range 1000–2000 parts per million by volume (ppmV) at S(z) (CO2 contributed by soil respiration) = 2500 ppmV and 25°C during the Hauterivian–Albian interval (c. 30 Ma duration). Such atmospheric CO2 levels are 4–8 times pre-industrial values, almost double those estimated by geochemical modelling and much higher than those established from stomatal indices in fossil plants. Rapid rises in pCO2 are identified for early Hauterivian, middle Barremian, late Aptian, early Albian and middle Albian time, and rapid falls for intervening periods. These episodic cyclic changes in pCO2 are not attributed to local tectonism and volcanism but rather to global changes. The relationship between reconstructed pCO2 and the development of large igneous provinces (LIPs) remains unclear, although large-scale extrusion of basalt may well be responsible for relatively high atmospheric levels of this greenhouse gas. Suggested levels of relatively low pCO2 correspond in timing to intervals of regional to global enrichment of marine carbon in sediments and negative carbon isotope (δ13C) excursions characteristic of the oceanic anoxic events OAE1a (Selli Event), Kilian and Paquier events (constituting part of the OAE 1b cluster) and OAE1d. Short-term episodes of high pCO2 coincide with negligible carbon isotope excursions associated with the Faraoni Event and the Jacob Event. Given that episodes of regional organic carbon burial would draw down CO2 and negative δ13C excursions indicate the addition of isotopically light carbon to the ocean–atmosphere system, controls on the carbon cycle in controlling pCO2 during Early Cretaceous time were clearly complex and made more so by atmospheric composition also being affected by changes in silicate weathering intensity.


Sign in / Sign up

Export Citation Format

Share Document