Cambrian eclogite-facies metamorphism in the central Transantarctic Mountains, East Antarctica: Extending the record of early Palaeozoic high-pressure metamorphism along the eastern Gondwanan margin

Lithos ◽  
2020 ◽  
Vol 366-367 ◽  
pp. 105571
Author(s):  
Dillon A. Brown ◽  
Martin Hand ◽  
Laura J. Morrissey ◽  
John W. Goodge
1994 ◽  
Vol 162 ◽  
pp. 77-90
Author(s):  
J.A Gilotti

Eclogite, gamet clinopyroxenite, gamet websterite and websterite bodies were discovered within the Skærfjorden gneiss complex during recent mapping in North-East Greenland. These eclogitic pods extend from Danmarkshavn (c. 76° 40'N) to the northern limit of the area mapped (78°N), and attest to widespread high-pressure metamorphism. Eclogites with the assemblage omphacite + garnet ± quartz ± futile are common. The protoliths of some of the eclogites were xenoliths within the precursor batholiths to the gneisses. Field relations, regional correlations and preliminary geochronology indicate that the eclogite facies metamorphism is Caledonian. The eclogites formed at minimum pressures between 10-15 kilobars and temperatures between 600–900°C, and hence are the medium-temperature type typically formed in over-thickened crust during continent collision.


2010 ◽  
Vol 74 (1) ◽  
pp. 111-126 ◽  
Author(s):  
S. W. Faryad ◽  
H. Klápová ◽  
L. Nosál

AbstractAtoll garnet has been found in metabasites and quartz- and mica-rich rocks that have experienced low- to medium-temperature, high-pressure eclogite facies metamorphism in the Krušné Hory (Erzgebirge). They occur in several localities but are restricted to thin, texturally distinct zones, even on a thin-section scale. The mechanism of atoll garnet formation is documented by a series of micrographs and compositional maps and profiles of atoll garnet in combination with textural relations to other phases in the rocks. The core of full garnet or its relics in the atoll garnet have larger Ca and Fe, but smaller Mg contents, compared with the thin rim (ring). In addition to quartz, Na-Ca amphibole and phengite, the atoll cores are filled by a new garnet that has a composition similar to the outer rim. Formation of the atoll garnet is interpreted as resulting from fluid infiltration and element exchange between the garnet core and matrix, a process facilitated by a temperature increase during eclogite facies metamorphism. In addition to fluid access, the primary textures, mainly grain size, were also effective for the atoll garnet formation. Small grain fractions with thin rims were easily infiltrated by fluid, which used the short distance for element exchange between core and matrix. The core garnet was gradually dissolved and replaced by new garnet having the same crystallographic orientation as the rim or relics in the core.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dillon A. Brown ◽  
Laura J. Morrissey ◽  
John W. Goodge ◽  
Martin Hand

AbstractThe cratonic elements of proto-Australia, East Antarctica, and Laurentia constitute the nucleus of the Palaeo-Mesoproterozoic supercontinent Nuna, with the eastern margin of the Mawson Continent (South Australia and East Antarctica) positioned adjacent to the western margin of Laurentia. Such reconstructions of Nuna fundamentally rely on palaeomagnetic and geological evidence. In the geological record, eclogite-facies rocks are irrefutable indicators of subduction and collisional orogenesis, yet occurrences of eclogites in the ancient Earth (> 1.5 Ga) are rare. Models for Palaeoproterozoic amalgamation between Australia, East Antarctica, and Laurentia are based in part on an interpretation that eclogite-facies metamorphism and, therefore, collisional orogenesis, occurred in the Nimrod Complex of the central Transantarctic Mountains at c. 1.7 Ga. However, new zircon petrochronological data from relict eclogite preserved in the Nimrod Complex indicate that high-pressure metamorphism did not occur in the Palaeoproterozoic, but instead occurred during early Palaeozoic Ross orogenesis along the active convergent margin of East Gondwana. Relict c. 1.7 Ga zircons from the eclogites have trace-element characteristics reflecting the original igneous precursor, thereby casting doubt on evidence for a Palaeoproterozoic convergent plate boundary along the current eastern margin of the Mawson Continent. Therefore, rather than a Palaeoproterozoic (c. 1.7 Ga) history involving subduction-related continental collision, a pattern of crustal shortening, magmatism, and high thermal gradient metamorphism connected cratons in Australia, East Antarctica, and western Laurentia at that time, leading eventually to amalgamation of Nuna at c. 1.6 Ga.


2016 ◽  
Vol 154 (3) ◽  
pp. 491-515 ◽  
Author(s):  
A. K. ENGVIK ◽  
B. BINGEN

AbstractGranulite-facies metamorphism recorded in NE Mozambique is attributed to three main tectonothermal events, covering more than 1400 Ma from Palaeoproterozoic – early Palaeozoic time. (1) Usagaran–Ubendian high-grade metamorphism of Palaeoproterozoic age is documented in the Ponta Messuli Complex by Grt-Sil-Crd-bearing metapelites, estimated to pressure (P) 0.75 ± 0.08 GPa and temperature (T) 765 ± 96°C. The post-peak P-T path is characterized by decompression followed by near-isobaric cooling. (2) Irumidian medium- to high-pressure granulite-facies metamorphism is evident in the Unango and Marrupa complexes of late Mesoproterozoic – early Neoproterozoic age. High-pressure granulite-facies is documented by Grt-Cpx-Pl-Rt-bearing mafic granulites in the northwestern part of the Unango Complex, with peak conditions up to P = 1.5 GPa and T = 850°C. Medium-pressure granulite-facies conditions recording P of c. 1.15 GPa and T of 875°C are documented by Grt-Opx-Cpx-Pl assemblage in mafic granulites and charnockitic gneisses of the central part of the Unango Complex. (3) Tectonothermal activity during the Ediacaran–Cambrian Kuunga Orogeny is recorded in the Mesoproterozoic gneiss complexes as amphibolite facies to medium-pressure granulite-facies metamorphism. Granulite facies are documented by Grt-Opx-Cpx-Pl-bearing mafic granulites and charnockitic gneisses, reporting P = 0.99 ± 13 GPa at T = 738 ± 84°C in the Unango Complex and P = 0.92 ± 18 GPa at T = 841 ± 135°C in the Marrupa Complex. This metamorphism is attributed to crustal thickening related to overriding of the Cabo Delgado Nappe Complex, and shorthening along the Lurio Belt during the early Palaeozoic Kuunga Orogeny.


Sign in / Sign up

Export Citation Format

Share Document