Effects of body condition score at calving and feeding various types of concentrate supplements to grazing dairy cows on early lactation performance

2008 ◽  
Vol 116 (1-3) ◽  
pp. 191-202 ◽  
Author(s):  
C.R. Stockdale
2005 ◽  
Vol 2005 ◽  
pp. 19-19
Author(s):  
T. Yan ◽  
R. E. Agnew ◽  
C. S. Mayne

Body condition of lactating dairy cows varies at different stages of lactation. Cows usually mobilise their body reserves to provide energy and protein for milk production in early lactation, and gain weight to deposit energy and protein for pregnancy at a later stage. The objective of the present study was to examine relationships between body condition score (CS) and body concentration of lipid, CP and energy.


2002 ◽  
Vol 2002 ◽  
pp. 87-87 ◽  
Author(s):  
A.R.G. Wylie ◽  
D.J. Devlin ◽  
A.J. Bjourson

A review of published leptin data for growing lambs, older ewes and mature dairy cows in late lactation showed that only 0.30-0.37 of the variation in blood leptin concentration was explained by differences in body fat variably expressed as % of liveweight (LW), backfat thickness and body condition score (BCS) respectively (Wylieet al., 2002). In dairy cows between 15d and 226d postpartum, Wylieet al(2002) observed no overall correlation between leptin at slaughter and lipid expressed as % of LW, empty body weight or carcase weight and only a weak correlation in cows in mid-lactation. Losses of fat during early lactation may ‘uncouple’ the link between leptin and fat and produce a bias across all of lactation. Another explanation is that leptin may be more closely linked with lipogenesis than with the amount of stored fat. This study revisits some metabolite and hormone data from a previous investigation of IGF-1 changes in fed, fasted and re-fed sheep in the light of more recently obtained leptin concentrations in the same animals.


2016 ◽  
Vol 99 (3) ◽  
pp. 2329-2338 ◽  
Author(s):  
Joshua Lange ◽  
Allison McCarthy ◽  
Jane Kay ◽  
Susanne Meier ◽  
Caroline Walker ◽  
...  

2016 ◽  
Vol 16 (1) ◽  
pp. 129-143 ◽  
Author(s):  
Barbara Stefańska ◽  
Włodzimierz Nowak ◽  
Ewa Pruszyńska-Oszmałek ◽  
Robert Mikuła ◽  
Daniel Stanisławski ◽  
...  

Abstract The aim of the study was to investigate the effect of BCS (Body Condition Score) on the calving day and its decrease during early lactation on the biochemical blood indices and reproductive performance. One hundred and thirty-one Polish Holstein-Friesian cows were divided into three groups according to the North-American body condition score on the calving day (AC≤3.5 point BCS; MID 3.51-3.75 point BCS; FAT>3.75 point BCS) and according to the decrease in BCS during early lactation (HG >0.49 point BCS; WEL 0.49-0.25 point BCS, L<0.25 point BCS). In current study, significant interaction between change of BCS during early lactation and time of blood sampling on BHBA concentration was observed. In the AC group (≤3.5 BCS), the highest concentrations of glucose on 3 and 5 d of lactation compared to the MID and FAT groups and of insulin on 28 d and also IGF-I on 5 and 28 d of lactation compared to the FAT group were recorded. In the FAT group, the highest concentration of NEFA on 3 and 5 d compared to the AC group and of BHBA on 28 d of lactation compared to the MID group was recorded. The body condition score on the parturition day affected the reproductive performance; in the FAT group (>3.75 BCS) the lowest conception rate of the first insemination, insemination index and thereby the longest days open were observed. The highest decreases in BCS (HG >0.49 points) resulted in increased concentrations of NEFA on 3 d and of BHBA on 3 and 5 d. Moreover, in the HG group, the lowest concentration of T3 on 3, 5 and 28 d as compared to the WEL group was recorded. We concluded that the BCS (>3.5 points) on the calving day had a significantly negative effect on the metabolic status of dairy cows in the postpartum period estimated by the concentration of biochemical blood indices characterising carbohydrates (IGF-I, insulin) and lipid (NEFA, BHBA) metabolism and also the reproductive performance such as the conception rate of the first insemination, insemination index, days open. We suggested that the blood serum concentrations of IGF-I and NEFA were the most sensitive biochemical markers of the metabolic status of dairy cows in our study.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1054
Author(s):  
Zelmar Rodriguez ◽  
Elise Shepley ◽  
Pedro P. C. Ferro ◽  
Nilon L. Moraes ◽  
Acir M. Antunes ◽  
...  

Monitoring the body condition score (BCS) of dairy cows is a management strategy that can assist dairy producers in decision-making. The BCS and its variations reflect the level of body fat reserves and fat mobilization throughout the different stages of lactation. Cows that mobilize excessive amounts of fat reserves in response to the increased energy requirements of the transition period are more likely to have higher beta-hydroxybutyrate (BHB) concentration in blood, leading to a higher incidence of hyperketonemia postpartum. In this study, our main objective was to evaluate how both BCS (at 21 d prior to the expected calving date, −21 BCS) and change in BCS during the late dry period (−21 d to calving, ∆BCS) are associated with temporal patterns of blood BHB concentrations during the first two weeks of lactation. Our secondary objective was to characterize the relationship between the change in BCS in the late dry period, and milk yield and milk composition in the first milk test postpartum. In this retrospective cohort study, we assessed BCS at 21 (±3) days before the expected calving date and within three days after calving. Blood BHB concentration was measured at days 3 (±1), 7 (±1), and 14 (±1) postpartum. Hyperketonemia (HYK) was defined as blood BHB ≥ 1.2 mmol/L. To evaluate how −21 BCS and ∆BCS during the late dry period were associated with BHB in early lactation, linear mixed-effects regression models with an unstructured covariate matrix were performed. The association between ∆BCS and incidence of postpartum HYK were determined using a multivariable log-binomial model. A linear regression model was used to evaluate the association between ∆BCS and milk yield and milk composition in the first monthly test-day. Covariates used for model adjustment include parity, season, and baseline BCS. We observed that cows with BCS ≥ 4.0 at 21 d before their expected calving date had the highest BHB concentration postpartum, but no evidence that BCS ≥ 4.0 at 21 d was associated with fluctuations of BHB over time. Cows that experienced a large BCS loss (larger than 0.5 units) during the late dry period had a 61% (95% CI: 1.04, 2.50) higher risk of developing HYK in early lactation and had higher BHB concentrations during early lactation compared with cows with no ∆BCS prepartum. These associations were observed independently of the BCS at −21 d prepartum (baseline). In addition, cows that lost more than 0.5 BCS unit in the late dry period produced 3.3 kg less milk (95% CI: −7.06, 0.45) at the first milk test compared to cows that had no ∆BCS during the late dry period. No evidence of an association between −21 BCS and ∆BCS in the late dry period and milk composition was observed in our study. These results suggest that dynamic measures of BCS during the late dry period, such as ∆BCS, are better at evaluating blood BHB patterns in early lactation than BCS measured at a single time point. Cows with larger BCS loss during the late dry period and with greater parity are more likely to have higher concentrations of blood BHB postpartum, with the highest concentrations reported at 7 d post-calving.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245149
Author(s):  
Joaquín Barca ◽  
Ynte H. Schukken ◽  
Ana Meikle

The objective of this study was to determine if parity affected the effect of pegbovigrastim (PEG) treatment on white blood cell (WBC) counts in grazing dairy cows. Additionally, the association of prepartum body condition score (BCS) and non-esterified fatty acid (Pre-NEFA) concentration with WBC counts was investigated. The effect of early-lactation disease was included in the statistical analysis. A randomized controlled trial on four commercial grazing dairy farms was performed. Holstein primiparous (Control = 87, PEG = 89) and multiparous (Control = 181, PEG = 184) cows were randomly assigned to one of two treatments: first PEG dose 8 ± 5 (mean ± SD) days before the expected calving date and a second dose within 24 h after calving (PEG) compared to untreated controls (Control). Treatment effects were evaluated with mixed linear regression models. Treatment with PEG increased WBC, neutrophil, lymphocyte and monocyte counts at 6 ± 1 (mean ± SD) days in milk. Parity, BCS and their interactions with treatment were not associated with WBC counts. In control cows, Pre-NEFA concentration was associated with reduced WBC, neutrophil and lymphocyte counts and tended to be associated with reduced monocyte counts. Pegbovigrastim treatment reversed the negative association of Pre-NEFA concentration with neutrophil and monocyte counts and tended to reverse the negative association of Pre-NEFA concentration with WBC counts. In the PEG treated group, cows diagnosed with retained placenta or metritis showed lower neutrophil counts when compared to PEG treated cows without these clinical diseases. These data confirm that PEG treatment increases WBC, neutrophil, lymphocyte and monocyte counts in grazing dairy cows and that this effect is independent of parity. Pegbovigrastim treatment reversed the negative association of Pre-NEFA concentration with neutrophil and monocyte counts, and tended to reverse the negative association of Pre-NEFA concentration with WBC counts.


Sign in / Sign up

Export Citation Format

Share Document