Optimization of the pistachio nut roasting process using response surface methodology and gene expression programming

LWT ◽  
2008 ◽  
Vol 41 (1) ◽  
pp. 26-33 ◽  
Author(s):  
Talip Kahyaoglu
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Abubakar A. Umar ◽  
Ismail M. Saaid ◽  
Aliyu A. Sulaimon ◽  
Rashidah M. Pilus

This paper summarizes an investigation of certain operating parameters on the viscosity of petroleum emulsions. The production of crude oil is accompanied by emulsified water production, which comes along with various challenges like corroding the transport systems and catalysts poisoning during petroleum refining in the downstream. Several process variables are believed to affect the ease with which emulsified water can be separated from emulsions. Some of the issues have not been extensively examined in the literature. The simplicity with which water is separated from petroleum changes with age (after formation) of the emulsion; notwithstanding, this subject has not been investigated broadly in literature. This study tries to assess the correlation between aging time, water cut, crude oil viscosity, water viscosity and amount of solids and viscosity of petroleum emulsions. To achieve that, a response surface methodology (RSM) based on Box-Behnken design (BBD) was used to design the experiment. Synthetic emulsions were prepared from an Offshore Malaysian Crude oil based on the DoE design and were aged for 7 days. The emulsions viscosities were measured at 60-degree Celsius using an electromagnetic viscometer (EV100). The broad pressure and temperature range of the HPHT viscometer permit the imitation of acute conditions under which such emulsions may form. The data obtained from the RSM analysis was used to develop a prediction model using gene expression programming (GEP). It was discovered that the viscosity of water has no effect on the viscosities of the studied emulsions, as does the water cut and amount of solids. The most significant factor that affects emulsion viscosity is the aging time, with the emulsion becoming more viscous over time. This is believed to be imminent because of variations in the interfacial film structure. This is followed by the amount of solids, also believed to be as a result of increasing coverage at the interface of the water droplets, limiting the movements of the dispersed droplets (reduced coalescence), thereby increasing the viscosity of the emulsions.


2012 ◽  
Vol 524-527 ◽  
pp. 1070-1077
Author(s):  
Shao Jun Bai ◽  
Shu Ming Wen ◽  
Yu Chen ◽  
Hai Ying Shen ◽  
Dan Liu ◽  
...  

This study aimed to obtain volatile copper from a high-copper pyrite cinder by optimizing the chloridizing roasting process using response surface methodology (RSM). The effect of key parameters, i.e., dosage of CaCl2 addition, roasting time and roasting temperature, on the copper volatile ratio was investigated and a quadratic model was suggested by the methodology to correlate the variables to this volatile ratio. The results indicated that the model was in good agreement with the experimental data at a correlation coefficient (R2) of 0.9782, and the most influential parameter on efficiency was identified as the dosage of CaCl2 addition. The optimum conditions for chloridizing roasting from the high copper pyrite cinder were identified as a dosage of CaCl2 addition of 4.8 wt%, a roasting time of 19.28 min and a roasting temperature of 1151.51 °C; under such conditions, a copper volatile ratio of 97.82% was achieved. The pellets obtained by this process are characterized by a high content of hematite, and the main impurity element contents are consistent with the requirements for iron concentrate, which is suitable for use in ironmaking.


2017 ◽  
Vol 115 (2) ◽  
pp. 203 ◽  
Author(s):  
Wankun Wang ◽  
Fuchun Wang ◽  
Fanghai Lu

Microwave alkaline roasting-water dissolving process was proposed to improve the germanium (Ge) extraction from zinc oxide (ZnO) dust. The effects of important parameters were investigated and the process conditions were optimized using response surface methodology (RSM). The Ge extraction is consistent with the linear polynomial model type. Alkali-material ratio, microwave heating temperature and leaching temperature are the significant factors for this process. The optimized conditions are obtained as follows, alkali-material ratio of 0.9 kg/kg, aging time of 1.12 day, microwave heating at 658 K for 10 min, liquid–solid ratio of 4.31 L/kg, leaching temperature at 330 K, leaching time of 47 min with the Ge extraction about 99.38%. It is in consistence with the predictive value of 99.31%. Compared to the existed alkaline roasting process heated by electric furnace in literature, the alkaline roasting temperature and holding time. It shows a good prospect on leaching Ge from ZnO dust with microwave alkaline roasting-water dissolving process.


Author(s):  
D.M.H. A.H. Farah ◽  
Zaibunnisa, A.H Zaibunnisa, A.H ◽  
Misnawi Jati

Roasting of cocoa beans is a critical stage for development of its desirable flavour, aroma and colour. Prior to roasting, cocoa bean may taste astringent, bitter, acidy, musty, unclean, nutty or even chocolate-like, depends on the bean sources and their preparations. After roasting, the bean possesses a typical intense cocoa flavour. The Maillard or non-enzymatic browning reactions is a very important process for the development of cocoa flavor, which occurs primarily during the roasting process and it has generally been agreed that the main flavor components, pyrazines formation is associated within this reaction involving amino acids and reducing sugars. The effect of cocoa nib roasting conditions on sensory properties and colour of cocoa beans were investigated in this study. Roasting conditions in terms of temperature ranged from 110 to 160OC and time ranged from 15 to 40 min were optimized by using Response Surface Methodology based on the cocoa sensory characteristics including chocolate aroma, acidity, astringency, burnt taste and overall acceptability. The analyses used 9- point hedonic scale with twelve trained panelist. The changes in colour due to the roasting condition were also monitored using chromameter. Result of this study showed that sensory quality of cocoa liquor increased with the increase in roasting time and temperature up to 160OC and up to 40 min, respectively. Based on the Response Surface Methodology, the optimised operating condition for the roaster was at temperature of 127OC and time of 25 min. The proposed roasting conditions were able to produce superior quality cocoa beans that will be very useful for cocoa manufactures.Key words : Cocoa, cocoa liquor, flavour, aroma, colour, sensory characteristic, response surface methodology.


Sign in / Sign up

Export Citation Format

Share Document