volatile phenol
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 15)

H-INDEX

12
(FIVE YEARS 3)

Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5613
Author(s):  
Ruiwen Yang ◽  
Armando Alcazar-Magana ◽  
Yanping L. Qian ◽  
Michael C. Qian

Smoke-derived taint has become a significant concern for the U.S. wine industry, particularly on the west coast, and climate change is anticipated to aggravate it. High volatile phenols such as guaiacol, 4-methylguaiacol, 4-ethylguaiacol, 4-ethylphenol, and o-, p-, m-cresols have been suggested to be related to smoke-exposed grape and wine. This paper describes an analytical approach based on ethylene glycol/polydimethylsiloxane (EG/PDMS)-stir bar sorptive extraction-gas chromatography-mass spectrometry (SBSE-GC-MS) to quantify or estimate the concentrations of some smoke-related volatile phenols in wines. Correlation coefficients with R2 ≥ 0.990 were obtained. This method can quantify most smoked-related volatile phenols down to 0.5 μg/L in wine in selective ion monitoring mode. Recovery for the targeted volatile phenols ranged from 72.2% to 142.4% in the smoke-tainted wine matrix, except for 4-vinylguaiacol. The standard deviations of the volatile phenols were from 0 to 23% in smoke-tainted wine. The approach provides another tool to evaluate wine smoke exposure and potential smoke taint.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5277
Author(s):  
Julie A. Culbert ◽  
WenWen Jiang ◽  
Renata Ristic ◽  
Carolyn J. Puglisi ◽  
Elizabeth C. Nixon ◽  
...  

Taint in grapes and wine following vineyard exposure to bushfire smoke continues to challenge the financial viability of grape and wine producers worldwide. In response, researchers are studying the chemical, sensory and physiological consequences of grapevine smoke exposure. However, studies involving winemaking trials are often limited by the availability of suitable quantities of smoke-affected grapes, either from vineyards exposed to smoke or from field trials involving the application of smoke to grapevines. This study compared the accumulation of volatile phenol glycosides (as compositional markers of smoke taint) in Viognier and Cabernet Sauvignon grapes exposed to smoke pre- vs. post-harvest, and found post-harvest smoke exposure of fruit gave similar levels of volatile phenol glycosides to fruit exposed to smoke pre-harvest. Furthermore, wines made from smoke-affected fruit contained similar levels of smoke-derived volatile phenols and their glycosides, irrespective of whether smoke exposure occurred pre- vs. post-harvest. Post-harvest smoke exposure therefore provides a valid approach to generating smoke-affected grapes in the quantities needed for winemaking trials and/or trials that employ both chemical and sensory analysis of wine.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1798
Author(s):  
Margherita Modesti ◽  
Colleen Szeto ◽  
Renata Ristic ◽  
WenWen Jiang ◽  
Julie Culbert ◽  
...  

When bushfires occur near grape growing regions, vineyards can be exposed to smoke, and depending on the timing and duration of grapevine smoke exposure, fruit can become tainted. Smoke-derived volatile compounds, including volatile phenols, can impart unpleasant smoky, ashy characters to wines made from smoke-affected grapes, leading to substantial revenue losses where wines are perceivably tainted. This study investigated the potential for post-harvest ozone treatment of smoke-affected grapes to mitigate the intensity of smoke taint in wine. Merlot grapevines were exposed to smoke at ~7 days post-veraison and at harvest grapes were treated with 1 or 3 ppm of gaseous ozone (for 24 or 12 h, respectively), prior to winemaking. The concentrations of smoke taint marker compounds (i.e., free and glycosylated volatile phenols) were measured in grapes and wines to determine to what extent ozonation could mitigate the effects of grapevine exposure to smoke. The 24 h 1 ppm ozone treatment not only gave significantly lower volatile phenol and volatile phenol glycoside concentrations but also diminished the sensory perception of smoke taint in wine. Post-harvest smoke and ozone treatment of grapes suggests that ozone works more effectively when smoke-derived volatile phenols are in their free (aglycone) form, rather than glycosylated forms. Nevertheless, the collective results demonstrate the efficacy of post-harvest ozone treatment as a strategy for mitigation of smoke taint in wine.


Fermentation ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 4
Author(s):  
Ana-Marija Jagatić Korenika ◽  
Ivana Tomaz ◽  
Darko Preiner ◽  
Marina Lavrić ◽  
Branimir Šimić ◽  
...  

Even though Saccharomyces cerevisiae starter cultures are still largely used nowadays, the non-Saccharomyces contribution is re-evaluated, showing positive enological characteristics. Among them, Lachancea thermotolerans is one of the key yeast species that are desired for their contribution to wine sensory characteristics. The main goal of this work was to explore the impact of L. thermotolerans commercial yeast strain used in sequential inoculation with S. cerevisiae commercial yeast on the main enological parameters and volatile aroma profile of Trnjak, Babić, Blatina, and Frankovka red wines and compare it with wines produced by the use of S. cerevisiae commercial yeast strain. In all sequential fermented wines, lactic acid concentrations were significantly higher, ranging from 0.20 mg/L in Trnjak up to 0.92 mg/L in Frankovka wines, while reducing alcohol levels from 0.1% v/v in Trnjak up to 0.9% v/v in Frankovka wines. Among volatile compounds, a significant increase of ethyl lactate and isobutyl acetate, geraniol, and geranyl acetate was detected in all wines made by use of L. thermotolerans. In Babić wines, the strongest influence of sequential fermentation was connected with higher total terpenes and total ester concentrations, while Trnjak sequentially fermented wines stood up with higher total aldehyde, volatile phenol, and total lactone concentrations. Control wines, regardless of variety, stood up with higher concentrations of total higher alcohols, especially isoamyl alcohol. The present work contributed to a better understanding of the fermentation possibilities of selected non-Saccharomyces strains in the overall red wine quality modeling.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3720 ◽  
Author(s):  
Colleen Szeto ◽  
Renata Ristic ◽  
Dimitra Capone ◽  
Carolyn Puglisi ◽  
Vinay Pagay ◽  
...  

Wine made from grapes exposed to bushfire smoke can exhibit unpleasant smoky, ashy characters, which have been attributed to the presence of smoke-derived volatile phenols, in free or glycosylated forms. Here we report the uptake and glycosylation of volatile phenols by grapes following exposure of Cabernet Sauvignon vines to smoke, and their fate during winemaking. A significant delay was observed in the conversion of volatile phenols to their corresponding glycoconjugates, which suggests sequestration, the presence of intermediates within the glycosylation pathway and/or other volatile phenol storage forms. This finding has implications for industry in terms of detecting smoke-affected grapes following vineyard smoke exposure. The potential for an in-canopy sprinkler system to mitigate the uptake of smoke-derived volatile phenols by grapes, by spraying grapevines with water during smoke exposure, was also evaluated. While “misting” appeared to partially mitigate the uptake of volatile phenols by grapes during grapevine exposure to smoke, it did not readily influence the concentration of volatile phenols or the sensory perception of smoke taint in wine. Commercial sensors were used to monitor the concentration of smoke particulate matter (PM) during grapevine exposure to low and high density smoke. Similar PM profiles were observed, irrespective of smoke density, such that PM concentrations did not reflect the extent of smoke exposure by grapes or risk of taint in wine. The sensors could nevertheless be used to monitor the presence of smoke in vineyards during bushfires, and hence, the need for compositional analysis of grapes to quantify smoke taint marker compounds.


2020 ◽  
Vol 228 ◽  
pp. 117427
Author(s):  
Jingyi Ling ◽  
Feng Sheng ◽  
Yi Wang ◽  
Anping Peng ◽  
Xin Jin ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 910 ◽  
Author(s):  
Chao Dang ◽  
Vladimir Jiranek ◽  
Dennis K. Taylor ◽  
Kerry L. Wilkinson

Volatile phenols have been implicated as contributors to off-odors associated with taints from bushfire smoke and microbial spoilage. Various methods for the amelioration of off-odors have been evaluated, but to date, they have not included cyclodextrin (CD) polymers. In the current study, two CD polymers were prepared from β- and γ-CD, using hexamethylene diisocyanate (HDI) as a crosslinking agent. Adsorption tests were performed with four volatile phenols (guaiacol, 4-methylguaiacol, 4-ethylguaiacol and 4-ethylphenol) at concentrations up to 1 mg/L. The removal of volatile phenols by CD polymers achieved equilibrium almost instantly, with isotherm tests suggesting an adsorption capacity of 20.7 µg of volatile phenol per gram of polymer. Langmuir and Freundlich models were subsequently used to fit the data. In batch adsorption tests, the CD polymers achieved 45 to 77% removal of volatile phenols. Polymer reusability was also evaluated and was found to be excellent. A comparison between volatile phenol adsorption by CDs vs. CD polymers, determined using a novel four-phase headspace solid-phase microextraction (HS-SPME) method for gas chromatography-mass spectrometry (GC-MS), suggests CD polymers offer several advantages for use by the wine industry.


Processes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 82 ◽  
Author(s):  
Yali Liu ◽  
Han Cheng ◽  
Yueting He

The toxic pollutants phenol and cyanide in the bio-treated effluent of coking wastewater still need advanced treatment to meet environmental requirements. In this study, activated carbon prepared from municipal sludge and bamboo waste (SBAC) was used for simultaneous adsorption of phenol and cyanide from bio-treated effluent of coking wastewater. The results showed that the optimum removal efficiencies of volatile phenol (69.7%) and total cyanide (80.1%) were observed at a SBAC dosage of 8 g/L, a pH value of 8.0, and a contact time of 80 min. The physical and chemical properties of SBAC were analyzed using Brunauer–Emmett–Teller (BET) surface area (SBET), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. SBAC had high SBET (289.58 m2/g) and rich mesoporous structure (average pore diameter of 3.688 nm), and carboxylic groups on SBAC surfaces were enhanced due to the addition of bamboo waste. In addition, a kinetic model of pseudo-first-order fitted well with the experimental data of volatile phenol, while the adsorption of total cyanide onto the SBAC was better described by a pseudo-second-order kinetic model.


Sign in / Sign up

Export Citation Format

Share Document