Optimization of water in olive oil nano-emulsions composition with bioactive compounds by response surface methodology

LWT ◽  
2018 ◽  
Vol 89 ◽  
pp. 740-748 ◽  
Author(s):  
Maria Katsouli ◽  
Vasiliki Polychniatou ◽  
Constantina Tzia
Chemosensors ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 231
Author(s):  
Joana Madureira ◽  
Bruno Melgar ◽  
Celestino Santos-Buelga ◽  
Fernanda M. A. Margaça ◽  
Isabel C. F. R. Ferreira ◽  
...  

Olive pomace, an environmentally detrimental residue generated during olive oil extraction, contains bioactive compounds in demand by the food industry. To valorize this waste product a suitable yield for the extraction process is required. Heat-assisted extraction of bioactive compounds from olive pomace was optimized by a circumscribed central composite design and response surface methodology. Our previous studies indicated that irradiation could improve 2.4-fold the extractability of the main phenolic compounds from olive pomace. The effect of extraction time, temperature and solvent concentration on the yield of polyphenols from irradiated olive pomace at 5 kGy was tested. Hydroxytyrosol-1-β-glucoside, hydroxytyrosol, tyrosol and caffeic acid were quantified by High Performance Liquid Chromatography to calculate the total polyphenol content. The optimal general conditions by RSM modeling were extraction time of 120 min, temperature of 85 °C, and 76% of ethanol in water. Using these selected conditions, 19.04 ± 1.50 mg/g dry weight, 148.88 ± 8.73 mg/g extract of total polyphenols were obtained, representing a yield of 13.7%, which was consistent with the value predicted by the model. This work demonstrated the potential of residues from the olive oil industry as a suitable alternative to obtain compounds that could be used as ingredients for the food industry.


2014 ◽  
Vol 20 (1) ◽  
pp. 127-134 ◽  
Author(s):  
Kumar Singh ◽  
Mausumi Mukhopadhyay

In the present work, solvent free olive oil glycerolysis for the monoglycerides (MG) and diglycerides (DG) production with an immobilized Candida rugosa lipase was studied. MG and DG production were optimized using experiment design techniques and response surface methodology (RSM). RSM based on five-level, a five-variable central composite design (CCD) was used to optimize MG and DG production: reaction time, temperature, molar ratio of glycerol to oil, amount of lipase, and water content in glycerol. The reaction time, temperature, and amount of lipase were observed to be the most significant factors on the process response. The immobilized Candida rugosa lipase revealed optimum yield of MG and DG as 38.71 and 40.45 wt% respectively following a 5h reaction time with 0.025 g of lipase and 5% water content in glycerol at 40?C temperature. The yield of MG and DG production can be enhanced 1.5 fold by RSM.


2021 ◽  
Vol 9 (3) ◽  
pp. 745-754
Author(s):  
Vicente Amirpasha Tirado-Kulieva ◽  
Manuel Sánchez-Chero ◽  
Mario Villegas Yarlequé ◽  
Gretell Fiorela Villegas Aguilar ◽  
Gilberto Carrión-Barco ◽  
...  

Response surface methodology (RSM) is a widely used tool for modeling and optimization for food processes. The objective of this review is to evaluate recent findings on the use of RSM in the extraction of compounds from agri-food products. First, the steps for the application of RSM were briefly detailed. According to the analysis performed, RSM is suitable because it evaluates the effects of the independent variables and their interactions on the responses, which is ideal for the optimization of different techniques for the extraction of multiple bioactive compounds and therefore, in the various studies, has allowed to significantly increase the yield and even the biological activities of the extracts; however, RSM has limitations and considering the complexity and dynamics of foods, the challenge is much greater. In this sense, it was determined that simultaneous use with other techniques is necessary in order to optimally describe the process and obtain more accurate results.


Sign in / Sign up

Export Citation Format

Share Document