Multi-response surface optimisation of extrusion cooking to increase soluble dietary fibre and polyphenols in lupin seed coat

LWT ◽  
2021 ◽  
Vol 140 ◽  
pp. 110767
Author(s):  
Liezhou Zhong ◽  
Zhongxiang Fang ◽  
Mark L. Wahlqvist ◽  
Jonathan M. Hodgson ◽  
Stuart K. Johnson
LWT ◽  
2019 ◽  
Vol 99 ◽  
pp. 547-554 ◽  
Author(s):  
Liezhou Zhong ◽  
Zhongxiang Fang ◽  
Mark L. Wahlqvist ◽  
Jonathan M. Hodgson ◽  
Stuart K. Johnson

Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1330
Author(s):  
Shehzad Hussain ◽  
Minaxi Sharma ◽  
Rajeev Bhat

Sea buckthorn pomace is a valuable industrial waste/by-product obtained after juice production that contains bioactive, health-promoting dietary fibres. This pomace finds usage as animal feed or simply discarded, owed to the lack of appropriate handling or processing facilities. The present study was aimed to evaluate the effects of green extraction technologies such as ultrasonic-assisted extraction on the yield of soluble dietary fibre (SDF) from sea buckthorn pomace. Response surface methodology (RSM) coupled with Box–Behnken design (BBD) was applied for optimization of SDF yield. The effects of sonication temperature (60–80 °C), sonication power (100–130 W) and extraction time (30–60 min) on the yield of SDF were also investigated. Furthermore, colour measurement and hydration properties of sea buckthorn pomace powder (STP) and dietary fibre fractions (SDF and insoluble dietary fibre, IDF) were also investigated. From the RSM results, the optimal sonication temperature (67.83 °C), sonication power (105.52 W) and extraction time (51.18 min) were identified. Based on this, the modified optimum conditions were standardised (sonication temperature of 70 °C, sonication power of 105 W and extraction time of 50 min.). Accordingly, the yield of SDF obtained was 16.08 ± 0.18%, which was close to the predicted value (15.66%). Sonication temperature showed significant effects at p ≤ 0.01, while sonication power and extraction time showed significant effects at p ≤ 0.05 on the yield of SDF. The result on colour attributes of STP, SDF and IDF differed (L* (STP: 54.71 ± 0.72, IDF: 72.64 ± 0.21 and SDF: 54.53 ± 0.31), a* (STP: 52.35 ± 1.04, IDF: 32.85 ± 0.79 and SDF: 43.54 ± 0.03), b* (STP: 79.28 ± 0.62, IDF: 82.47 ± 0.19 and SDF: 71.33 ± 0.50), and ∆E* (STP: 79.93 ± 0.50, IDF: 74.18 ± 0.30 and SDF: 68.40 ± 0.39)). Higher values of hydration properties such as the water holding, swelling and oil holding capacities were found in SDF (7.25 ± 0.10 g g−1, 7.24 ± 0.05 mL g−1 and 1.49 ± 0.02 g g−1), followed by IDF (6.30 ± 0.02, 5.75 ± 0.07 and 1.25 ± 0.03) and STP (4.17 ± 0.04, 3.48 ± 0.06 and 0.89 ± 0.03), respectively. Based on our results, response surface methodology is recommended to be adopted to optimize the ultrasonic-assisted extraction to obtain maximum yield of SDF from sea buckthorn pomace. These results can be of practical usage while designing future functional food formulations using sea buckthorn pomace.


1992 ◽  
Vol 67 (3) ◽  
pp. 463-473 ◽  
Author(s):  
L. Bravo ◽  
F. Saura-Calixto ◽  
I. Goni

The present study was undertaken to explore the effect of apple pulp on weight and composition of faeces. This material is rich in dietary fibre (DF;620 g dry matter/kg) and contains appreciable amounts of polyphenols. Recent reports indicate that both condensed tannins (CT) and soluble polyphenols form cross-links with protein and inhibit digestive enzymes, affecting the protein digestibility, and may produce a stimulation of endogenous nitrogen excretion. Two groups of male Wistar rats were fed on either a control diet free of DF or a diet containing 100 g apple pulp DF/kg during 7 d after a 4 d adaptation period. Body-weight and food intake were monitored daily and faeces and urine were collected once daily. DF, water content and polyphenolic compounds were measured in faeces, and N content in both faeces and urine. Faecal weight increased in the fibre group by 280 and 240% when compared with wet and dry faecal weights of animals fed on the fibre-free diet. Soluble dietary fibre (SDF) excreted in faeces was 10.9% of the SDF ingested, which suggested a low resistance to fermentation of this fraction. Of the insoluble DF, 43% of the ingested fibre was fermented. Polyphenols were degraded in the intestinal tract. Of the ingested CT, 68.6% was recovered in faeces, while the soluble polyphenols were extensively degraded (85.7% of that ingested). On the other hand, a higher faecal N excretion was observed for the fibre-fed group, suggesting a decrease in the digestibility of the dietary protein and lower apparent digestibility and N balance indices.


2017 ◽  
Vol 8 (6) ◽  
pp. 2142-2154 ◽  
Author(s):  
Nikolay Repin ◽  
Brittney A. Kay ◽  
Steve W. Cui ◽  
Amanda J. Wright ◽  
Alison M. Duncan ◽  
...  

This work examines the mechanisms involved in the attenuation of postprandial glycemic and insulinemic responses associated with soluble dietary fibre (SDF) consumption.


2016 ◽  
Vol 33 (No. 5) ◽  
pp. 449-457 ◽  
Author(s):  
H.J. Im ◽  
K.Y. Yoon

We examined the potential use of buckwheat hulls as a raw material for producing soluble dietary fibre. The insoluble fibre fraction obtained from buckwheat hulls was hydrolysed by two commercial enzymes (Celluclast 1.5L for the cellulose fraction and Viscozyme L for the hemicellulose fraction) to obtain soluble fibre hydrolysates. Alcohol-insoluble dietary fibre (AIF) was separated from the freeze-dried soluble hydrolysate by treatment with 85% ethanol. The water-holding, oil-binding, and swelling capacities of AIF were increased by enzymatic hydrolysis. AIF had significantly (P < 0.05) higher functional properties than the control. AIF from the hemicellulose fraction effectively hindered the diffusion of glucose and bile acid from dialysis membranes, and had a significantly (P < 0.05) greater bile acid inhibitory effect than carboxymethylcellulose or pectin. It can be concluded that AIF from buckwheat hulls by enzymatic hydrolysis can used as dietary supplement and additive in the food industry.


Sign in / Sign up

Export Citation Format

Share Document