scholarly journals Isolation and identification of aroma-producing non-Saccharomyces yeast strains and the enological characteristic comparison in wine making

LWT ◽  
2022 ◽  
Vol 154 ◽  
pp. 112653
Author(s):  
Yen-Tso Lai ◽  
Chang-Wei Hsieh ◽  
Yi-Chen Lo ◽  
Bo-Kang Liou ◽  
Hui-Wen Lin ◽  
...  
2020 ◽  
Vol 8 (3) ◽  
pp. 323 ◽  
Author(s):  
Lanlan Hu ◽  
Rui Liu ◽  
Xiaohong Wang ◽  
Xiuyan Zhang

Co-fermentation of selected non-Saccharomyces yeast strain with Saccharomyces cerevisiae is regarded as a promising approach to improve the sensory quality of fruit wine. To evaluate the effects of co-fermentations between the selected non-Saccharomyces yeast strains (Hanseniaspora opuntiae, Hanseniaspora uvarum and Torulaspora delbrueckii) and S. cerevisiae on the sensory quality of citrus wine, the fermentation processes, the chemical compositions, and the sensory evaluations of citrus wines were analyzed. Compared with those of S. cerevisiae fermentation, co-fermentations produced high sensory qualities, and S. cerevisiae/H. opuntiae co-fermentation had the best sensory quality followed by Sc-Hu and Sc-Td co-fermentations. Additionally, all the co-fermentations had a lower amount of ethanol and total acidity, higher pH value, and higher content of volatile aroma compounds, especially the content of higher alcohol and ester compounds, than those of S. cerevisiae fermentation. Therefore, co-fermentations of the non-Saccharomyces yeast strains and S. cerevisiae could be employed to improve the sensory quality of citrus wines. These results would provide not only methods to improve the sensory quality of citrus wine, but also a valuable reference for the selection of non-Saccharomyces yeast strains for fruit wine fermentation.


2014 ◽  
Vol 181 ◽  
pp. 85-91 ◽  
Author(s):  
Manuel Quirós ◽  
Virginia Rojas ◽  
Ramon Gonzalez ◽  
Pilar Morales

Fermentation ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 51 ◽  
Author(s):  
Friedrich Felix Jacob ◽  
Lisa Striegel ◽  
Michael Rychlik ◽  
Mathias Hutzler ◽  
Frank-Jürgen Methner

Spent yeast from beer manufacturing is a cost-effective and nutrient-rich starting material for the production of yeast extracts. In this study, it is shown how physiologically important ingredients in a yeast extract are influenced by the composition of the spent yeast from the brewing process. In pilot fermentations, the time of cropping (primary fermentation, lagering) of the spent yeast and the original gravity (12 ˚P, 16 ˚P, 20 ˚P) of the fermentation medium was varied, and four alternative non-Saccharomyces yeast strains were compared with two commercial Saccharomyces yeast strains. In addition, spent yeast was contaminated with the beer spoiler Lactobacillus brevis. The general nutrient composition (total protein, fat, ash) was investigated as well as the proteinogenic amino acid spectrum, the various folate vitamers (5-CH3-H4folate, 5-CHO-H4folate, 10-CHO-PteGlu, H4folate, PteGlu) and the biological activity (reduction, antioxidative potential) of a mechanically (ultrasonic sonotrode) and an autolytically produced yeast extract. All the investigated ingredients from the yeast extract were influenced by the composition of the spent yeast from the brewing process. The biodiversity of the spent yeast from the brewing process therefore directly affects the content of physiologically valuable ingredients of a yeast extract and should be taken into consideration in industrial manufacturing processes.


2012 ◽  
Vol 78 (9) ◽  
pp. 3256-3265 ◽  
Author(s):  
C. Erny ◽  
P. Raoult ◽  
A. Alais ◽  
G. Butterlin ◽  
P. Delobel ◽  
...  

ABSTRACTThe hybrid nature of lager-brewing yeast strains has been known for 25 years; however, yeast hybrids have only recently been described in cider and wine fermentations. In this study, we characterized the hybrid genomes and the relatedness of the Eg8 industrial yeast strain and of 24Saccharomyces cerevisiae/Saccharomyces kudriavzeviihybrid yeast strains used for wine making in France (Alsace), Germany, Hungary, and the United States. An array-based comparative genome hybridization (aCGH) profile of the Eg8 genome revealed a typical chimeric profile. Measurement of hybrids DNA content per cell by flow cytometry revealed multiple ploidy levels (2n, 3n, or 4n), and restriction fragment length polymorphism analysis of 22 genes indicated variable amounts ofS. kudriavzeviigenetic content in three representative strains. We developed microsatellite markers forS. kudriavzeviiand used them to analyze the diversity of a population isolated from oaks in Ardèche (France). This analysis revealed new insights into the diversity of this species. We then analyzed the diversity of the wine hybrids for 12S. cerevisiaeand 7S. kudriavzeviimicrosatellite loci and found that these strains are the products of multiple hybridization events between severalS. cerevisiaewine yeast isolates and variousS. kudriavzeviistrains. The Eg8 lineage appeared remarkable, since it harbors strains found over a wide geographic area, and the interstrain divergence measured with a (δμ)2genetic distance indicates an ancient origin. These findings reflect the specific adaptations made byS. cerevisiae/S. kudriavzeviicryophilic hybrids to winery environments in cool climates.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1452
Author(s):  
Qian Ge ◽  
Chunfeng Guo ◽  
Jing Zhang ◽  
Yue Yan ◽  
Danqing Zhao ◽  
...  

In this study, Vidal grape must was fermented using commercial Saccharomyces cerevisiae F33 in pure culture as a control and in mixed culture with five indigenous non-Saccharomyces yeast strains (Hanseniaspora uvarum QTX22, Saccharomycopsis crataegensis YC30, Pichia kluyveri HSP14, Metschnikowia pulcherrima YC12, and Rhodosporidiobolus lusitaniae QTX15) through simultaneous fermentation in a 1:1 ratio. Simultaneous fermentation inhibited the growth of S. cerevisiae F33 and delayed the time to reach the maximum biomass. Compared with pure fermentation, the contents of polyphenols, acetic esters, ethyl esters, other esters, and terpenes were increased by R. lusitaniae QTX15, S. crataegensis YC30, and P. kluyveri HSP14 through simultaneous fermentation. S. crataegensis YC30 produced the highest total aroma activity and the most abundant aroma substances of all the wine samples. The odor activity values of 1 C13-norisoprenoid, 3 terpenes, 6 acetic esters, and 10 ethyl esters improved significantly, and three lactones (δ-decalactone, γ-nonalactone, and γ-decalactone) related to coconut and creamy flavor were only found in this wine. Moreover, this sample showed obvious “floral” and “fruity” note odor due to having the highest amount of ethyl ester aromatic substances and cinnamene, linalool, citronellol, β-damascenone, isoamyl ethanoate, benzylcarbinyl acetate, isobutyl acetate, etc. We suggest that simultaneous fermentation of S. crataegensis YC30 with S. cerevisiae might represent a novel strategy for the future production of Vidal icewine.


Sign in / Sign up

Export Citation Format

Share Document