scholarly journals Ecological Success of a Group of Saccharomyces cerevisiae/Saccharomyces kudriavzevii Hybrids in the Northern European Wine-Making Environment

2012 ◽  
Vol 78 (9) ◽  
pp. 3256-3265 ◽  
Author(s):  
C. Erny ◽  
P. Raoult ◽  
A. Alais ◽  
G. Butterlin ◽  
P. Delobel ◽  
...  

ABSTRACTThe hybrid nature of lager-brewing yeast strains has been known for 25 years; however, yeast hybrids have only recently been described in cider and wine fermentations. In this study, we characterized the hybrid genomes and the relatedness of the Eg8 industrial yeast strain and of 24Saccharomyces cerevisiae/Saccharomyces kudriavzeviihybrid yeast strains used for wine making in France (Alsace), Germany, Hungary, and the United States. An array-based comparative genome hybridization (aCGH) profile of the Eg8 genome revealed a typical chimeric profile. Measurement of hybrids DNA content per cell by flow cytometry revealed multiple ploidy levels (2n, 3n, or 4n), and restriction fragment length polymorphism analysis of 22 genes indicated variable amounts ofS. kudriavzeviigenetic content in three representative strains. We developed microsatellite markers forS. kudriavzeviiand used them to analyze the diversity of a population isolated from oaks in Ardèche (France). This analysis revealed new insights into the diversity of this species. We then analyzed the diversity of the wine hybrids for 12S. cerevisiaeand 7S. kudriavzeviimicrosatellite loci and found that these strains are the products of multiple hybridization events between severalS. cerevisiaewine yeast isolates and variousS. kudriavzeviistrains. The Eg8 lineage appeared remarkable, since it harbors strains found over a wide geographic area, and the interstrain divergence measured with a (δμ)2genetic distance indicates an ancient origin. These findings reflect the specific adaptations made byS. cerevisiae/S. kudriavzeviicryophilic hybrids to winery environments in cool climates.

2017 ◽  
Vol 83 (20) ◽  
Author(s):  
Bruna Inez Carvalho Figueiredo ◽  
Margarete Alice Fontes Saraiva ◽  
Paloma Patrick de Souza Pimenta ◽  
Miriam Conceição de Souza Testasicca ◽  
Geraldo Magela Santos Sampaio ◽  
...  

ABSTRACT The development of hybrids has been an effective approach to generate novel yeast strains with optimal technological profile for use in beer production. This study describes the generation of a new yeast strain for lager beer production by direct mating between two Saccharomyces cerevisiae strains isolated from cachaça distilleries: one that was strongly flocculent, and the other with higher production of acetate esters. The first step in this procedure was to analyze the sporulation ability and reproductive cycle of strains belonging to a specific collection of yeasts isolated from cachaça fermentation vats. Most strains showed high rates of sporulation, spore viability, and homothallic behavior. In order to obtain new yeast strains with desirable properties useful for lager beer production, we compare haploid-to-haploid and diploid-to-diploid mating procedures. Moreover, an assessment of parental phenotype traits showed that the segregant diploid C2-1d generated from a diploid-to-diploid mating experiment showed good fermentation performance at low temperature, high flocculation capacity, and desirable production of acetate esters that was significantly better than that of one type lager strain. Therefore, strain C2-1d might be an important candidate for the production of lager beer, with distinct fruit traces and originating using a non-genetically modified organism (GMO) approach. IMPORTANCE Recent work has suggested the utilization of hybridization techniques for the generation of novel non-genetically modified brewing yeast strains with combined properties not commonly found in a unique yeast strain. We have observed remarkable traits, especially low temperature tolerance, maltotriose utilization, flocculation ability, and production of volatile aroma compounds, among a collection of Saccharomyces cerevisiae strains isolated from cachaça distilleries, which allow their utilization in the production of beer. The significance of our research is in the use of breeding/hybridization techniques to generate yeast strains that would be appropriate for producing new lager beers by exploring the capacity of cachaça yeast strains to flocculate and to ferment maltose at low temperature, with the concomitant production of flavoring compounds.


2011 ◽  
Vol 78 (2) ◽  
pp. 385-392 ◽  
Author(s):  
Chiemi Noguchi ◽  
Daisuke Watanabe ◽  
Yan Zhou ◽  
Takeshi Akao ◽  
Hitoshi Shimoi

ABSTRACTModern sake yeast strains, which produce high concentrations of ethanol, are unexpectedly sensitive to environmental stress during sake brewing. To reveal the underlying mechanism, we investigated a well-characterized yeast stress response mediated by a heat shock element (HSE) and heat shock transcription factor Hsf1p inSaccharomyces cerevisiaesake yeast. The HSE-lacZactivity of sake yeast during sake fermentation and under acute ethanol stress was severely impaired compared to that of laboratory yeast. Moreover, the Hsf1p of modern sake yeast was highly and constitutively hyperphosphorylated, irrespective of the extracellular stress. SinceHSF1allele replacement did not significantly affect the HSE-mediated ethanol stress response or Hsf1p phosphorylation patterns in either sake or laboratory yeast, the regulatory machinery of Hsf1p is presumed to function differently between these types of yeast. To identify phosphatases whose loss affected the control of Hsf1p, we screened a series of phosphatase gene deletion mutants in a laboratory strain background. Among the 29 mutants, a Δppt1mutant exhibited constitutive hyperphosphorylation of Hsf1p, similarly to the modern sake yeast strains, which lack the entirePPT1gene locus. We confirmed that the expression of laboratory yeast-derived functionalPPT1recovered the HSE-mediated stress response of sake yeast. In addition, deletion ofPPT1in laboratory yeast resulted in enhanced fermentation ability. Taken together, these data demonstrate that hyperphosphorylation of Hsf1p caused by loss of thePPT1gene at least partly accounts for the defective stress response and high ethanol productivity of modern sake yeast strains.


2014 ◽  
Vol 80 (21) ◽  
pp. 6677-6684 ◽  
Author(s):  
Youyun Liang ◽  
Tong Si ◽  
Ee Lui Ang ◽  
Huimin Zhao

ABSTRACTSeveral yeast strains have been engineered to express different cellulases to achieve simultaneous saccharification and fermentation of lignocellulosic materials. However, successes in these endeavors were modest, as demonstrated by the relatively low ethanol titers and the limited ability of the engineered yeast strains to grow using cellulosic materials as the sole carbon source. Recently, substantial enhancements to the breakdown of cellulosic substrates have been observed when lytic polysaccharide monooxygenases (LPMOs) were added to traditional cellulase cocktails. LPMOs are reported to cleave cellulose oxidatively in the presence of enzymatic electron donors such as cellobiose dehydrogenases. In this study, we coexpressed LPMOs and cellobiose dehydrogenases with cellobiohydrolases, endoglucanases, and β-glucosidases inSaccharomyces cerevisiae. These enzymes were secreted and docked onto surface-displayed miniscaffoldins through cohesin-dockerin interaction to generate pentafunctional minicellulosomes. The enzymes on the miniscaffoldins acted synergistically to boost the degradation of phosphoric acid swollen cellulose and increased the ethanol titers from our previously achieved levels of 1.8 to 2.7 g/liter. In addition, the newly developed recombinant yeast strain was also able to grow using phosphoric acid swollen cellulose as the sole carbon source. The results demonstrate the promise of the pentafunctional minicellulosomes for consolidated bioprocessing by yeast.


2012 ◽  
Vol 78 (11) ◽  
pp. 4008-4016 ◽  
Author(s):  
Daisuke Watanabe ◽  
Yuya Araki ◽  
Yan Zhou ◽  
Naoki Maeya ◽  
Takeshi Akao ◽  
...  

ABSTRACTSake yeast cells have defective entry into the quiescent state, allowing them to sustain high fermentation rates. To reveal the underlying mechanism, we investigated the PAS kinase Rim15p, which orchestrates initiation of the quiescence program inSaccharomyces cerevisiae. We found that Rim15p is truncated at the carboxyl terminus in modern sake yeast strains as a result of a frameshift mutation. Introduction of this mutation or deletion of the full-lengthRIM15gene in a laboratory strain led to a defective stress response, decreased synthesis of the storage carbohydrates trehalose and glycogen, and impaired G1arrest, which together closely resemble the characteristic phenotypes of sake yeast. Notably, expression of a functionalRIM15gene in a modern sake strain suppressed all of these phenotypes, demonstrating that dysfunction of Rim15p prevents sake yeast cells from entering quiescence. Moreover, loss of Rim15p or its downstream targets Igo1p and Igo2p remarkably improved the fermentation rate in a laboratory strain. This finding verified that Rim15p-mediated entry into quiescence plays pivotal roles in the inhibition of ethanol fermentation. Taken together, our results suggest that the loss-of-function mutation in theRIM15gene may be the key genetic determinant of the increased ethanol production rates in modern sake yeast strains.


2018 ◽  
Vol 85 (1) ◽  
Author(s):  
Daisuke Watanabe ◽  
Takuma Kajihara ◽  
Yukiko Sugimoto ◽  
Kenichi Takagi ◽  
Megumi Mizuno ◽  
...  

ABSTRACT Saccharomyces cerevisiae sake yeast strain Kyokai no. 7 (K7) and its relatives carry a homozygous loss-of-function mutation in the RIM15 gene, which encodes a Greatwall family protein kinase. Disruption of RIM15 in nonsake yeast strains leads to improved alcoholic fermentation, indicating that the defect in Rim15p is associated with the enhanced fermentation performance of sake yeast cells. In order to understand how Rim15p mediates fermentation control, we here focused on target-of-rapamycin protein kinase complex 1 (TORC1) and protein phosphatase 2A with the B55δ regulatory subunit (PP2AB55δ), complexes that are known to act upstream and downstream of Rim15p, respectively. Several lines of evidence, including our previous transcriptomic analysis data, suggested enhanced TORC1 signaling in sake yeast cells during sake fermentation. Fermentation tests of the TORC1-related mutants using a laboratory strain revealed that TORC1 signaling positively regulates the initial fermentation rate in a Rim15p-dependent manner. Deletion of the CDC55 gene, encoding B55δ, abolished the high fermentation performance of Rim15p-deficient laboratory yeast and sake yeast cells, indicating that PP2AB55δ mediates the fermentation control by TORC1 and Rim15p. The TORC1-Greatwall-PP2AB55δ pathway similarly affected the fermentation rate in the fission yeast Schizosaccharomyces pombe, strongly suggesting that the evolutionarily conserved pathway governs alcoholic fermentation in yeasts. It is likely that elevated PP2AB55δ activity accounts for the high fermentation performance of sake yeast cells. Heterozygous loss-of-function mutations in CDC55 found in K7-related sake strains may indicate that the Rim15p-deficient phenotypes are disadvantageous to cell survival. IMPORTANCE The biochemical processes and enzymes responsible for glycolysis and alcoholic fermentation by the yeast S. cerevisiae have long been the subject of scientific research. Nevertheless, the factors determining fermentation performance in vivo are not fully understood. As a result, the industrial breeding of yeast strains has required empirical characterization of fermentation by screening numerous mutants through laborious fermentation tests. To establish a rational and efficient breeding strategy, key regulators of alcoholic fermentation need to be identified. In the present study, we focused on how sake yeast strains of S. cerevisiae have acquired high alcoholic fermentation performance. Our findings provide a rational molecular basis to design yeast strains with optimal fermentation performance for production of alcoholic beverages and bioethanol. In addition, as the evolutionarily conserved TORC1-Greatwall-PP2AB55δ pathway plays a major role in the glycolytic control, our work may contribute to research on carbohydrate metabolism in higher eukaryotes.


mSphere ◽  
2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Evgeniy Potapenko ◽  
Ciro D. Cordeiro ◽  
Guozhong Huang ◽  
Roberto Docampo

ABSTRACTInorganic pyrophosphate (PPi) is a by-product of biosynthetic reactions and has bioenergetic and regulatory roles in a variety of cells. Here we show that PPiand other pyrophosphate-containing compounds, including polyphosphate (polyP), can stimulate sodium-dependent depolarization of the membrane potential and Piconductance inXenopusoocytes expressing aSaccharomyces cerevisiaeorTrypanosoma bruceiNa+/Pisymporter. PPiis not taken up byXenopusoocytes, and deletion of the TbPho91 SPX domain abolished its depolarizing effect. PPigenerated outward currents in Na+/Pi-loaded giant vacuoles prepared from wild-type orpho91Δ yeast strains expressingTbPHO91but not from thepho91Δstrains. Our results suggest that PPi, at physiological concentrations, can function as a signaling molecule releasing PifromS. cerevisiaevacuoles andT. bruceiacidocalcisomes.IMPORTANCEAcidocalcisomes, first described in trypanosomes and known to be present in a variety of cells, have similarities withS. cerevisiaevacuoles in their structure and composition. Both organelles share a Na+/Pisymporter involved in Pirelease to the cytosol, where it is needed for biosynthetic reactions. Here we show that PPi, at physiological cytosolic concentrations, stimulates the symporter expressed in eitherXenopusoocytes or yeast vacuoles via its SPX domain, revealing a signaling role of this molecule.


2014 ◽  
Vol 80 (24) ◽  
pp. 7694-7701 ◽  
Author(s):  
Guo-Chang Zhang ◽  
In Iok Kong ◽  
Heejin Kim ◽  
Jing-Jing Liu ◽  
Jamie H. D. Cate ◽  
...  

ABSTRACTIndustrial polyploid yeast strains harbor numerous beneficial traits but suffer from a lack of available auxotrophic markers for genetic manipulation. Here we demonstrated a quick and efficient strategy to generate auxotrophic markers in industrial polyploid yeast strains with the RNA-guided Cas9 nuclease. We successfully constructed a quadruple auxotrophic mutant of a popular industrial polyploid yeast strain,Saccharomyces cerevisiaeATCC 4124, withura3,trp1,leu2, andhis3auxotrophies through RNA-guided Cas9 nuclease. Even though multiple alleles of auxotrophic marker genes had to be disrupted simultaneously, we observed knockouts in up to 60% of the positive colonies after targeted gene disruption. In addition, growth-based spotting assays and fermentation experiments showed that the auxotrophic mutants inherited the beneficial traits of the parental strain, such as tolerance of major fermentation inhibitors and high temperature. Moreover, the auxotrophic mutants could be transformed with plasmids containing selection marker genes. These results indicate that precise gene disruptions based on the RNA-guided Cas9 nuclease now enable metabolic engineering of polyploidS. cerevisiaestrains that have been widely used in the wine, beer, and fermentation industries.


2020 ◽  
Author(s):  
Diego Bonatto

AbstractYeasts from the species Saccharomyces cerevisiae (ale yeast) and Saccharomyces pastorianus (lager yeast) are the main component of beer fermentation. It is known that different beer categories depend on the use of specific ale or lager strains, where the yeast imprint its distinctive fermentative profile to the beer. Despite this, there are no studies reporting how diverse, rich, and homogeneous the beer categories are in terms of commercially available brewing yeast strains. In this work, the diversity, richness, and evenness of different beer categories and commercial yeast strains available for brewing were evaluated by applying quantitative concepts of ecology analysis in a sample of 121,528 beer recipes. For this purpose, the frequency of ale or lager and dry or liquid yeast formulations usage was accessed and its influence in the fermentation temperature, attenuation profile, and number of recipes for a beer category were analyzed. The results indicated that many beer categories are preferentially fermented with dry yeast strains formulations instead of liquid yeasts, despite considering the high number of available liquid yeast formulations. Moreover, ale dry strains are preferentially used for lager brewing. The preferential use of specific yeast formulations drives the diversity, richness, and evenness of a beer category, showing that many yeast strains are potentially and industrially underexplored.


2013 ◽  
Vol 79 (17) ◽  
pp. 5345-5356 ◽  
Author(s):  
Clark M. Henderson ◽  
Wade F. Zeno ◽  
Larry A. Lerno ◽  
Marjorie L. Longo ◽  
David E. Block

ABSTRACTDuring alcoholic fermentation,Saccharomyces cerevisiaeis exposed to a host of environmental and physiological stresses. Extremes of fermentation temperature have previously been demonstrated to induce fermentation arrest under growth conditions that would otherwise result in complete sugar utilization at “normal” temperatures and nutrient levels. Fermentations were carried out at 15°C, 25°C, and 35°C in a defined high-sugar medium using threeSaccharomyces cerevisiaestrains with diverse fermentation characteristics. The lipid composition of these strains was analyzed at two fermentation stages, when ethanol levels were low early in stationary phase and in late stationary phase at high ethanol concentrations. Several lipids exhibited dramatic differences in membrane concentration in a temperature-dependent manner. Principal component analysis (PCA) was used as a tool to elucidate correlations between specific lipid species and fermentation temperature for each yeast strain. Fermentations carried out at 35°C exhibited very high concentrations of several phosphatidylinositol species, whereas at 15°C these yeast strains exhibited higher levels of phosphatidylethanolamine and phosphatidylcholine species with medium-chain fatty acids. Furthermore, membrane concentrations of ergosterol were highest in the yeast strain that experienced stuck fermentations at all three temperatures. Fluorescence anisotropy measurements of yeast cell membrane fluidity during fermentation were carried out using the lipophilic fluorophore diphenylhexatriene. These measurements demonstrate that the changes in the lipid composition of these yeast strains across the range of fermentation temperatures used in this study did not significantly affect cell membrane fluidity. However, the results from this study indicate that fermentingS. cerevisiaemodulates its membrane lipid composition in a temperature-dependent manner.


2013 ◽  
Vol 690-693 ◽  
pp. 1345-1349
Author(s):  
Wei Xu ◽  
Jing Wang ◽  
Da Wei Zhang

Four preponderant yeast strains (GJ01, GJ02, GJ03 and GJ04) were isolated from the spontaneous fermentation pear wine as source of yeast for wine making from pear. Ethanol yield of GJ03 was the highest and its using rapidity of the sugar was the most quickly. GJ03 was identified as Saccharomyces cerevisiae and named Saccharomyces cerevisiae GJ03. The orange wine fermented associated by Saccharomyces cerevisiae GJ03 was the best in quality by sensory evaluation among all orange wines whose ethanol concentration was 9.06% (v/v).


Sign in / Sign up

Export Citation Format

Share Document