Response of diatom and silicoflagellate assemblages in the central Gulf of California to regional climate change during the past 55kyrs

2014 ◽  
Vol 108 ◽  
pp. 28-40 ◽  
Author(s):  
John A. Barron ◽  
David Bukry ◽  
Heather Cheshire
2019 ◽  
Vol 11 (9) ◽  
pp. 1082 ◽  
Author(s):  
Xiankun Yang ◽  
Xixi Lu ◽  
Edward Park ◽  
Paolo Tarolli

Lakes in the Hindu Kush-Himalaya-Tibetan (HKHT) regions are crucial indicators for the combined impacts of regional climate change and resultant glacier retreat. However, they lack long-term systematic monitoring and thus their responses to recent climatic change still remain only partially understood. This study investigated lake extent fluctuations in the HKHT regions over the past 40 years using Landsat (MSS/TM/ETM+/OLI) images obtained from the 1970s to 2014. Influenced by different regional atmospheric circulation systems, our results show that lake changing patterns are distinct from region to region, with the most intensive lake shrinking observed in northeastern HKHT (HKHT Interior, Tarim, Yellow, Yangtze), while the most extensive expansion was observed in the western and southwestern HKHT (Amu Darya, Ganges Indus and Brahmaputra), largely caused by the proliferation of small lakes in high-altitude regions during 1970s–1995. In the past 20 years, extensive lake expansions (~39.6% in area and ~119.1% in quantity) were observed in all HKHT regions. Climate change, especially precipitation change, is the major driving force to the changing dynamics of the lake fluctuations; however, effects from the glacier melting were also significant, which contributed approximately 31.9–40.5%, 16.5–39.3%, 12.8–29.0%, and 3.3–6.1% of runoff to lakes in the headwaters of the Tarim, Amu Darya, Indus, and Ganges, respectively. We consider that the findings in this paper could have both immediate and long-term implications for dealing with water-related hazards, controlling glacial lake outburst floods, and securing water resources in the HKHT regions, which contain the headwater sources for some of the largest rivers in Asia that sustain 1.3 billion people.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Junhu Dai ◽  
Huanjiong Wang ◽  
Quansheng Ge

In order to understand past plant phenological responses to climate change in China (1963–2009), we conducted trends analysis of spring phenophases based on observation data at 33 sites from the Chinese Phenological Observation Network (CPON). The phenological data on first leaf date (FLD) and first flowering date (FFD) for five broad-leaved woody plants from 1963 to 2009 were analyzed. Since most phenological time series are discontinuous because of observation interruptions at certain period, we first interpolated phenological time series by using the optimal model between the spring warming (SW) model and the UniChill model to form continuous time series. Subsequently, by using regression analysis, we found that the spring phenophases of woody plants in China advanced at a mean rate of 0.18 days/year over the past 50 years. Changes of spring phenophases exhibited strong regional difference. The linear trends in spring phenophases were −0.18, −0.28, −0.21, −0.04, and −0.14 days/year for the Northeast China Plain, the North China Plain, the Middle-Lower Yangtze Plain, the Yunnan-Guizhou Plateau, and South China, respectively. The spatial differences in phenological trends can be attributed to regional climate change patterns in China.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Zhili Wang ◽  
Lei Lin ◽  
Yangyang Xu ◽  
Huizheng Che ◽  
Xiaoye Zhang ◽  
...  

AbstractAnthropogenic aerosol (AA) forcing has been shown as a critical driver of climate change over Asia since the mid-20th century. Here we show that almost all Coupled Model Intercomparison Project Phase 6 (CMIP6) models fail to capture the observed dipole pattern of aerosol optical depth (AOD) trends over Asia during 2006–2014, last decade of CMIP6 historical simulation, due to an opposite trend over eastern China compared with observations. The incorrect AOD trend over China is attributed to problematic AA emissions adopted by CMIP6. There are obvious differences in simulated regional aerosol radiative forcing and temperature responses over Asia when using two different emissions inventories (one adopted by CMIP6; the other from Peking university, a more trustworthy inventory) to driving a global aerosol-climate model separately. We further show that some widely adopted CMIP6 pathways (after 2015) also significantly underestimate the more recent decline in AA emissions over China. These flaws may bring about errors to the CMIP6-based regional climate attribution over Asia for the last two decades and projection for the next few decades, previously anticipated to inform a wide range of impact analysis.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3704
Author(s):  
Agnieszka Karman ◽  
Andrzej Miszczuk ◽  
Urszula Bronisz

The article deals with the competitiveness of regions in the face of climate change. The aim was to present the concept of measuring the Regional Climate Change Competitiveness Index. We used a comparative and logical analysis of the concept of regional competitiveness and heuristic conceptual methods to construct the index and measurement scale. The structure of the index includes six broad sub-indexes: Basic, Natural, Efficiency, Innovation, Sectoral, Social, and 89 indicators. A practical application of the model was presented for the Mazowieckie province in Poland. This allowed the region’s performance in the context of climate change to be presented, and regional weaknesses in the process of adaptation to climate change to be identified. The conclusions of the research confirm the possibility of applying the Regional Climate Change Competitiveness Index in the economic analysis and strategic planning. The presented model constitutes one of the earliest tools for the evaluation of climate change competitiveness at a regional level.


2017 ◽  
Vol 17 (6) ◽  
pp. 1563-1568 ◽  
Author(s):  
Christopher P. O. Reyer ◽  
Kanta Kumari Rigaud ◽  
Erick Fernandes ◽  
William Hare ◽  
Olivia Serdeczny ◽  
...  

2012 ◽  
Vol 40-41 ◽  
pp. 32-46 ◽  
Author(s):  
M. Zampieri ◽  
F. Giorgi ◽  
P. Lionello ◽  
G. Nikulin

2021 ◽  
Author(s):  
Chengcheng Ye ◽  
Yibo Yang ◽  
Xiaomin Fang ◽  
Weilin Zhang ◽  
Chunhui Song ◽  
...  

<p>Global cooling, the early uplift of the Tibetan Plateau, and the retreat of the Paratethys are three main factors that regulate long-term climate change in the Asian interior during the Cenozoic. However, the debated elevation history of the Tibetan Plateau and the overlapping climate effects of the Tibetan Plateau uplift and Paratethys retreat makes it difficult to assess the driving mechanism on regional climate change in a particular period. Some recent progress suggests that precisely dated Paratethys transgression/regression cycles appear to have fluctuated over broad regions with low relief in the northern Tibetan Plateau in the middle Eocene–early Oligocene, when the global climate was characterized by generally continuous cooling followed by the rapid Eocene–Oligocene climate transition (EOT). Therefore, a middle Eocene–early Oligocene record from the Asian interior with unambiguous paleoclimatic implications offers an opportunity to distinguish between the climatic effects of the Paratethys retreat and those of global cooling.</p><p>Here, we present a complete paleolake salinity record from middle Eocene to early Miocene (~42-29 Ma) in the Qaidam Basin using detailed clay boron content and clay mineralogical investigations. Two independent paleosalimeters, equivalent boron and Couch’s salinity, collectively present a three-staged salinity evolution, from an oligohaline–mesohaline environment in the middle Eocene (42-~34 Ma) to a mesosaline environment in late Eocene-early Oligocene (~34-~29 Ma). This clay boron-derived salinity evolution is further supported by the published chloride-based and ostracod-based paleosalinity estimates in the Qaidam Basin. Our quantitative paleolake reconstruction between ~42 and 29 Ma in the Qaidam Basin resembles the hydroclimate change in the neighboring Xining Basin, of which both present good agreement with changes of marine benthic oxygen isotope compositions. We thus speculated that the secular trend of clay boron-derived paleolake salinity in ~42-29 Ma is primarily controlled by global cooling, which regulates regional climate change by influencing the evaporation capacity in the moisture source of Qaidam Basin. Superimposed on this trend, the Paratethys transgression/regression cycles served as an important factor regulating wet/dry fluctuations in the Asian interior between ~42 and ~34 Ma.</p>


Sign in / Sign up

Export Citation Format

Share Document