Spatial variations and potential risks of heavy metals in sediments of Yueqing Bay, China

2021 ◽  
Vol 173 ◽  
pp. 112983
Author(s):  
Weimin Yao ◽  
Chengye Hu ◽  
Xiaolong Yang ◽  
Bonian Shui
2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Xia Sun ◽  
Bao-Shi Li ◽  
Xuan-Li Liu ◽  
Cheng-Xuan Li

Coastal waters are polluted by heavy metals to varying degrees, posing potential risks to marine ecology and human health. In May 2006, the pollution levels, sources, and ecological risks of heavy metals (Cu, Pb, Zn, Cd, Hg, and As) in seawater, surface sediments, and living organisms were studied in Jiuzhen Bay in Fujian, China. This study identified Hg (0.26–0.72 µg/L) and As (20.3–31.5 µg/L) pollution in the seawater of Jiuzhen Bay. In sediments, heavy Pb pollution (946 µg/g dw) was only detected at one station at a level posing very serious potential risk, while Hg pollution (0.052–0.087 µg/g dw) was observed at three stations at a level posing serious potential risk. No heavy metal pollution was detected in sediments at other stations. The concentrations of five heavy metals (Cu, Zn, As, Cd, and Pb) exceeded the corresponding National Quality Standards for oysters, indicating heavy pollution, based on an ecological risk assessment. In clams, two heavy metals (Pb and As) exceeded the standards, indicating light pollution, based on an ecological risk assessment. No heavy metal pollution was found in fish or shrimps. The heavy metals in the seawater and sediments of Jiuzhen Bay are mainly derived from the river discharges of Luxi and Wujiang Rivers although sewage discharge along the coast of Jiuzhen Bay is another source of heavy metal pollution at some stations. Given the pollution of Pb, Hg, and As in seawater and sediments at some stations within the bay, the potential risks of Pb, Hg, and As in living organisms to both the marine ecology and human health deserve increased attention.


Chemosphere ◽  
2021 ◽  
Vol 263 ◽  
pp. 127983 ◽  
Author(s):  
Maria Filippini ◽  
Anna Baldisserotto ◽  
Simonetta Menotta ◽  
Giorgio Fedrizzi ◽  
Silva Rubini ◽  
...  

2015 ◽  
Vol 6 (1) ◽  
pp. 179-186
Author(s):  
Akoteyon ◽  
S Isaiah

Water samples collected from fifteen hand dug wells in November (dry season), 2011 and July (Wet season), 2012 using random sampling technique. In situ parameters were measured for pH, electrical conductivity, total dissolved solids using portable meters. Heavy metals were analyzed for; Fe, Cu, Zn, Cd, Pb, and Cr using Atomic Absorption Spectrophotometer (AAS). The study aimed at examining the spatial variations in groundwater quality around dumpsite in Igando using paired sample T-test statistical technique. The result shows that the measured pH values were below the minimum WHO standard for drinking water quality in wet and dry seasons in about73.3% and 26.7% respectively. Also, approximately, 13.3% of EC, and 6.7% exceeded the prescribed standard limit of WHO in dry and wet seasons respectively. Concentration of Fe exceeded drinking water quality in all the sampling locations during wet season and only about 46.7% in dry season. Pb, Zn, and Cu exceeded WHO limit in about 86.7%, 80%, and 26.7% respectively in dry season. Concentration of Pb, Cd , Cu and Cr were under detection limit in all the locations except at locations G2 for Cu in wet season. The paired samples statistics and correlation revealed that the mean values of all the parameters were higher in dry season with the exception of Fe. No significant correlations exist among the paramet er for both seasons at p<0.05. The paired T-test show significant seasonal variations among four heavy metals including Fe, Cd, Pb and Zn.The study concluded that, samples in dry season are of low quality compared to wet. The study recommends public enlightenment on solid waste disposal, controlled anthropogenic activities, and treatment /recycling of waste to prevent heavy metal from leaching unto the sub-surface.DOI: http://dx.doi.org/10.3329/jesnr.v6i1.22063 J. Environ. Sci. & Natural Resources, 6(1): 179-186 2013


Sign in / Sign up

Export Citation Format

Share Document