scholarly journals Design safety margin of a 10,000 TEU container ship through ultimate hull girder load combination analysis

2016 ◽  
Vol 46 ◽  
pp. 78-101 ◽  
Author(s):  
E. Alfred Mohammed ◽  
S.D. Benson ◽  
S.E. Hirdaris ◽  
R.S. Dow
1997 ◽  
Vol 119 (2) ◽  
pp. 114-119 ◽  
Author(s):  
A. E. Mansour ◽  
P. H. Wirsching ◽  
B. Ayyub ◽  
G. White

A demonstration summary of a reliability-based structural design code for ships is presented for two ship types: a cruiser and a tanker. One reason for the development of such a code is to provide specifications which produce ship structure having a weight savings and/or improvement in reliability relative to structure designed by traditional methods. Another reason is to provide uniform safety margin for ships within each type. For both ship types, code requirements cover four failure modes: hull girder bulkling, unstiffened plate yielding and buckling, stiffened plate buckling, and fatigue of critical detail. Both serviceability and ultimate limit states are considered. Because of limitation on the length, only hull girder modes are presented in this paper. Code requirements for other modes will be presented in future publication. A specific provision of the code will be safety check expression, which, for example, for three bending moments (still water Ms, wave Mw, and dynamic Md), and strength Mu, might have the form, following the partial safety factor format: γsMs+γwMw+γdMd≤φMu γs, γw, γd, and φ are the partial safety factors. The design variables (M’s) are to be taken at their nominal values, typically values in the safe side of the respective distributions. Other safety check expressions for hull girder failure that include load combination factors, as well as consequence of failure factors, are considered. This paper provides a summary of safety check expressions for the hull girder modes.


Author(s):  
Fabien Bigot ◽  
François-Xavier Sireta ◽  
Eric Baudin ◽  
Quentin Derbanne ◽  
Etienne Tiphine ◽  
...  

Ship transport is growing up rapidly, leading to ships size increase, and particularly for container ships. The last generation of Container Ship is now called Ultra Large Container Ship (ULCS). Due to their increasing sizes they are more flexible and more prone to wave induced vibrations of their hull girder: springing and whipping. The subsequent increase of the structure fatigue damage needs to be evaluated at the design stage, thus pushing the development of hydro-elastic simulation models. Spectral fatigue analysis including the first order springing can be done at a reasonable computational cost since the coupling between the sea-keeping and the Finite Element Method (FEM) structural analysis is performed in frequency domain. On the opposite, the simulation of non-linear phenomena (Non linear springing, whipping) has to be done in time domain, which dramatically increases the computation cost. In the context of ULCS, because of hull girder torsion and structural discontinuities, the hot spot stress time series that are required for fatigue analysis cannot be simply obtained from the hull girder loads in way of the detail. On the other hand, the computation cost to perform a FEM analysis at each time step is too high, so alternative solutions are necessary. In this paper a new solution is proposed, that is derived from a method for the efficient conversion of full scale strain measurements into internal loads. In this context, the process is reversed so that the stresses in the structural details are derived from the internal loads computed by the sea-keeping program. First, a base of distortion modes is built using a structural model of the ship. An original method to build this base using the structural response to wave loading is proposed. Then a conversion matrix is used to project the computed internal loads values on the distortion modes base, and the hot spot stresses are obtained by recombination of their modal values. The Moore-Penrose pseudo-inverse is used to minimize the error. In a first step, the conversion procedure is established and validated using the frequency domain hydro-structure model of a ULCS. Then the method is applied to a non-linear time domain simulation for which the structural response has actually been computed at each time step in order to have a reference stress signal, in order to prove its efficiency.


Author(s):  
Wenbo Huang

Abstract Based on the extreme value of the primary loads of ship hull girder instead of characteristic values, the more reasonable load combination factors are defined. In order to evaluate the random variation of newly defined load combination factors, based on Ferry-Berges & Castanheta (FBC) and Poisson square wave models, the still water bending moments (SWBM), vertical wave bending moments (VWBM) and their combined processes are simulated to get the random realizations of load combination factors. The statistical analysis results show that the load combination factors take the value of 1 with the highest probability and can be well fitted by the Weibull distribution. Such information should be incorporated appropriately in the reliability analysis of ship hull girder.


2020 ◽  
Vol 10 (8) ◽  
pp. 2978
Author(s):  
Ryo Hanada ◽  
Tetsuo Okada ◽  
Yasumi Kawamura ◽  
Tetsuji Miyashita

In this study, as a preliminary attempt to reveal the whipping response of large container ships in actual seaways, the stress monitoring data of an 8600 TEU large container ship were analyzed. The measurement lasted approximately five years, and using a large amount of data, we investigated how the sea state and operational conditions affected the whipping response. In addition, the midship longitudinal stresses were decomposed into hull girder vertical bending, horizontal bending, and torsional and axial components. Thereafter, we found that the whipping magnitude on the torsional and horizontal bending components is much smaller than that on the vertical bending component. Future research would include the analysis of a larger amount of data, analysis of other sensor data, and effects of various patterns of vibrational response on the ultimate strength and fatigue strength. The obtained results will benefit the future design and operation of large container ships for safer navigation.


Author(s):  
Yongwon Lee ◽  
Zhenhong Wang ◽  
Nigel White ◽  
Spyros E. Hirdaris

As part of WILS II (Wave Induced Loads on Ships) Joint Industry Project organised by MOERI (Maritime and Ocean Engineering Research Institute, Korea), Lloyd’s Register has undertaken time domain springing and whipping analyses for a 10,000 TEU class container ship using computational tools developed in the Co-operative Research Ships (CRS) JIP [1]. For idealising the ship and handling the flexible modes of the structure, a boundary element method and a finite element method are employed for coupling fluid and structure domain problems respectively. The hydrodynamic module takes into account nonlinear effects of Froude-Krylov and restoring forces. This Fluid Structure Interaction (FSI) model is also coupled with slamming loads to predict wave loads due to whipping effects. Vibration modes and natural frequencies of the ship hull girder are calculated by idealising the ship structure as a Timoshenko beam. The results from springing and whipping analyses are compared with the results from linear and nonlinear time domain calculations for the rigid body. The results from the computational analyses in regular waves have been correlated with those from model tests undertaken by MOERI. Further the global effects of springing and whipping acting on large container ships are summarised and discussed.


Author(s):  
Akira Tatsumi ◽  
Masahiko Fujikubo

The purpose of this research is to clarify the effect of bottom local loads on the hull girder collapse behavior of large container ship (8000TEU class) A 1/2+1+1/2 hold model of container ship is analyzed using implicit finite element method. The results reveal two major causes of reduction of hull girder ultimate strength due to local loads. One is biaxial compressive stresses induced at outer bottom. Thus, smaller hogging moment can induce a collapse of bottom panels. The other is a reduction of effectiveness of inner bottom that is on the tension side of local bending. As a result, the container ship attains hull girder ultimate strength with smaller spread of collapse region compared to that under pure bending.


Author(s):  
Gaute Storhaug ◽  
Quentin Derbanne ◽  
Byung-Ki Choi ◽  
Torgeir Moan ◽  
Ole Andreas Hermundstad

Many large and ultra large container vessels have entered operation lately and more vessels will enter operation in the coming years. The operational experience is limited and one of the concerns is the additional effect of hull girder vibrations especially from whipping (bow impacts), but also from springing (resonance). Whipping contributes both to increased fatigue and extreme loading, while springing does mainly contribute to increased fatigue loading. MAIB recommended the industry to join forces to investigate the effect of whipping after MSC Napoli, a Post-Panamax container vessel, broke in two in January 2007. This has been followed up by a JIP initiated in 2008 with the following participants: HHI, DNV, BV, CeSOS and Marintek. In 2009 a new design 13000TEU vessel was tested in head seas and reported in [1]. The current paper deals with fatigue and extreme loading of the same vessel, but from realistic quartering sea conditions tested in 2010. Different headings and the effect of wave energy spreading have been investigated and compared to results from head seas. Further, the effect of the vibrations have been investigated on torsion and horizontal bending, as the model is also allowed to vibrate with realistic frequencies in other modes in addition to vertical bending. The findings suggest that changing the course is not effective to reduce the fatigue loading of critical fatigue sensitive details amidships. The effect of wave energy spreading did also not reduce the fatigue loading significantly. For the highest observed vertical bending moments in each sea state and for the three cross sections the wave energy spreading in average reduced the maxima, but for the highest sea state the effect of wave spreading did not consistently give reduced maxima. This is an important aspect when considering the available safety margin that may be reduced by whipping. The whipping gave also a considerable contribution to horizontal bending and torsion. This suggests that validation of numerical tools is urgent with respect to off head sea conditions and that these tools must incorporate the real structural behavior to confirm the importance of the response from torsional and horizontal as well as for vertical vibrations.


Sign in / Sign up

Export Citation Format

Share Document