scholarly journals Methodology for the simulation of a ship's damage stability and ultimate strength conditions following a collision

2021 ◽  
Vol 79 ◽  
pp. 103027
Author(s):  
Artjoms Kuznecovs ◽  
Martin Schreuder ◽  
Jonas W. Ringsberg
1977 ◽  
Vol 1977 (141) ◽  
pp. 190-197 ◽  
Author(s):  
Yuzuru Fujita ◽  
Toshiharu Nomoto ◽  
Osamu Niho

2020 ◽  
Vol 86 (5) ◽  
pp. 43-51
Author(s):  
V. M. Matyunin ◽  
A. Yu. Marchenkov ◽  
N. Abusaif ◽  
P. V. Volkov ◽  
D. A. Zhgut

The history of appearance and the current state of instrumented indentation are briefly described. It is noted that the materials instrumented indentation methods using a pyramid and ball indenters are actively developing and are currently regulated by several Russian and international standards. These standards provide formulas for calculating the Young’s modulus and hardness at maximum indentation load. Instrumented indentation diagrams «load F – displacement α» of a ball indenter for metallic materials were investigated. The special points on the instrumented indentation diagrams «F – α» loading curves in the area of elastic into elastoplastic deformation transition, and in the area of stable elastoplastic deformation are revealed. A loading curve area with the load above which the dF/dα begins to decrease is analyzed. A technique is proposed for converting «F – α» diagrams to «unrestored Brinell hardness HBt – relative unrestored indent depth t/R» diagrams. The elastic and elastoplastic areas of «HBt – t/R» diagrams are described by equations obtained analytically and experimentally. The materials strain hardening parameters during ball indentation in the area of elastoplastic and plastic deformation are proposed. The similarity of «HBt – t/R» indentation diagram with the «stress σ – strain δ» tensile diagrams containing common zones and points is shown. Methods have been developed for determining hardness at the elastic limit, hardness at the yield strength, and hardness at the ultimate strength by instrumented indentation with the equations for their calculation. Experiments on structural materials with different mechanical properties were carried out by instrumented indentation. The values of hardness at the elastic limit, hardness at the yield strength and hardness at the ultimate strength are determined. It is concluded that the correlations between the elastic limit and hardness at the elastic limit, yield strength and hardness at the yield strength, ultimate tensile strength and hardness at the ultimate strength is more justified, since the listed mechanical characteristics are determined by the common special points of indentation diagrams and tensile tests diagrams.


Author(s):  
Wei Xu ◽  
C. Guedes Soares

AbstractThe objective of this paper is to study the residual ultimate strength of box beams with impact-induced damage, as a model of what may occur in ship hulls. The bottom and side plates of ship hulls can suffer denting or fracture damage due to grounding, collision and other contacts during the ship’s service life and these impact-induced damages could result in considerable strength degradation. Box beams are firstly subjected to impact loading and then four-point bending loading is imposed on the damaged structures to assess the residual strength using ANSYS/LS_DYNA. The ultimate moment and collapse modes are discussed considering the effect of impact location. The impact-induced deformation is introduced in the four-point bending simulation, and the impact-induced stress is included or not to determine the effect of residual stress and distortion after impact. It is shown that impact location has significant influence on the residual ultimate bending moment of the damaged box beam providing that the impact energy is kept constant. The collapse modes also change when the impactor strikes on different locations. Damaged hard corner and inclined neutral axes might explain the reduction of ultimate strength and diverse collapse modes. The residual stress in the box beam after impact may increase or decrease the ultimate strength depending on impact location.


2021 ◽  
pp. 117072
Author(s):  
Gaia Righi ◽  
Carlos J. Ruestes ◽  
Camelia V. Stan ◽  
Suzanne J. Ali ◽  
Robert E. Rudd ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mahmoud Haghighi ◽  
Hossein Golestanian ◽  
Farshid Aghadavoudi

Abstract In this paper, the effects of filler content and the use of hybrid nanofillers on agglomeration and nanocomposite mechanical properties such as elastic moduli, ultimate strength and elongation to failure are investigated experimentally. In addition, thermoset epoxy-based two-phase and hybrid nanocomposites are simulated using multiscale modeling techniques. First, molecular dynamics simulation is carried out at nanoscale considering the interphase. Next, finite element method and micromechanical modeling are used for micro and macro scale modeling of nanocomposites. Nanocomposite samples containing carbon nanotubes, graphene nanoplatelets, and hybrid nanofillers with different filler contents are prepared and are tested. Also, field emission scanning electron microscopy is used to take micrographs from samples’ fracture surfaces. The results indicate that in two-phase nanocomposites, elastic modulus and ultimate strength increase while nanocomposite elongation to failure decreases with reinforcement weight fraction. In addition, nanofiller agglomeration occurred at high nanofiller contents especially higher than 0.75 wt% in the two-phase nanocomposites. Nanofiller agglomeration was observed to be much lower in the hybrid nanocomposite samples. Therefore, using hybrid nanofillers delays/prevents agglomeration and improves mechanical properties of nanocomposite at the same total filler content.


Sign in / Sign up

Export Citation Format

Share Document