scholarly journals Numerical Investigation on the Ultimate Strength of Box Beams with Impact Damage

Author(s):  
Wei Xu ◽  
C. Guedes Soares

AbstractThe objective of this paper is to study the residual ultimate strength of box beams with impact-induced damage, as a model of what may occur in ship hulls. The bottom and side plates of ship hulls can suffer denting or fracture damage due to grounding, collision and other contacts during the ship’s service life and these impact-induced damages could result in considerable strength degradation. Box beams are firstly subjected to impact loading and then four-point bending loading is imposed on the damaged structures to assess the residual strength using ANSYS/LS_DYNA. The ultimate moment and collapse modes are discussed considering the effect of impact location. The impact-induced deformation is introduced in the four-point bending simulation, and the impact-induced stress is included or not to determine the effect of residual stress and distortion after impact. It is shown that impact location has significant influence on the residual ultimate bending moment of the damaged box beam providing that the impact energy is kept constant. The collapse modes also change when the impactor strikes on different locations. Damaged hard corner and inclined neutral axes might explain the reduction of ultimate strength and diverse collapse modes. The residual stress in the box beam after impact may increase or decrease the ultimate strength depending on impact location.

Author(s):  
Bruno Zamorano-Senderos ◽  
Niell Elvin ◽  
Samuel Shin

This paper studies some aspects of impact location detection in composites materials using triangulation methods with embedded piezoelectric sensors. The first step of any impact damage evaluation method is to ascertain if an impact has happened and its location. More sophisticated methods (not addressed in this paper) can then be used to determine the type and extent of damage and to estimate the residual life of the structure. We propose a novel sensor array that potentially reduces the number of computations required to locate the position of the impact and reduces the complexity of embedded sensor wiring. Reducing the computational complexity allows the use of lighter, cheaper and less energy consuming electronic devices. The new technique reduces the classical computation from a planar (two dimensional) search to an angular (one dimensional) search. The new technique is experimentally compared with a classical triangulation technique at moderate ballistic speeds (300 m/s). This paper shows that the new technique reduces the computational cost, but also reduces accuracy of impact location.


2021 ◽  
Vol 2083 (3) ◽  
pp. 032037
Author(s):  
Qian Sun ◽  
Jianmin Liu ◽  
Hong Zhou

Abstract It is of great significance to study the crashworthiness of LNG carrier to improve its crashresistance and enhance its operation safety. In this paper, the collision process between the bulbous bow of the container ship and the side structure of the LNG ship is analyzed by using nonlinear finite element numerical simulation. Collision performance of LNG carrier and collision indicators during the collision, the impact force, velocity and displacement and energy absorption in the process of collision by changing parameters of the major velocity, impact angle and impact location and others are studied. The relevant research results have a strong practical significance for analyzing the deformation, strengthening measures and structural repair of ship side structure impact damage.


Author(s):  
Jie Cai ◽  
Xiaoli Jiang ◽  
Gabriel Lodewijks

In case of ship accidents, the ship’s hull will inevitably suffer from damages such as holes, cracks, dent etc., which will threaten the structural safety of ship. It is essential to study the ultimate strength of damaged ships in order to facilitate the decision-making process of ship salvage. There are considerable publications on the subject, however, the impact of the induced residual stress and deformation are normally excluded in those studies. This paper therefore aims at investigating the effect of the impact induced residual stress and deformation on the ultimate strength of a stiffened panel through application of a nonlinear Finite Element Analysis (FEA) method. Firstly, a literature review on ultimate strength of damaged ships is presented. Secondly, a nonlinear numerical simulation is adopted to investigate the ultimate strength of stiffened panels accounting for residual stress and deformation. this procedure consists of two stages: the impact stage and the static stage. The results of the numerical simulation of both stages are validated through the results of experiments and simulations available in literature. Afterwards, a series of case studies are performed deploying the validated numerical method. Finally, a closed form expression to predict the ultimate strength accounting for impact induced residual stress and deformation is proposed based on direct simulation. Results show that the combined effect of impact induced residual stress and deformation can significantly reduce structures’ load carrying capacity. The maximum reduction ratio reaches 37% in local stiffened panel. The method of removal of all the plastic deformation area is generally too conservative to predict the ultimate strength of a damaged local stiffened panel, which will underestimate the residual load carrying capacity of ships considerably.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2038
Author(s):  
Maria Pia Falaschetti ◽  
Matteo Scafé ◽  
Nicola Zavatta ◽  
Enrico Troiani

Composite materials usage in several industrial fields is now widespread, and this leads to the necessity of overcoming issues that are still currently open. In the aeronautic industry, this is especially true for Barely Visible Impact Damage (BVID) and humidity uptake issues. BVID is the most insidious kind of impact damage, being rather common and not easily detectable. These, along with the ageing that a composite structure could face during its operative life, could be a cause of fatal failures. In this paper, the influence of water absorption on impacted specimens compressive residual strength was studied. Specimens were impacted using a modified Charpy pendulum. Two different locations were chosen for comparison: Near-Edge (NE) and Central (CI). Accelerated hygrothermal ageing was conducted on impacted and reference nonimpacted coupons, placing them in a water-filled jar at 70 °C. Compressive tests were performed in accordance with the Combined Loading Compression (CLC) test method. A Dynamic Mechanical Analysis (DMA) was performed as well. The results showed the influence of hygrothermal ageing, as expected. Nevertheless, the influence of impact location on compressive residual strength is not clearly noticeable in aged specimens, leading to the conclusion that hygrothermal ageing may have a greater effect on composite compressive strength than the analysed BVI damage.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 182
Author(s):  
Suvi Santa-aho ◽  
Mika Kiviluoma ◽  
Tuomas Jokiaho ◽  
Tejas Gundgire ◽  
Mari Honkanen ◽  
...  

Additive manufacturing (AM) is a relatively new manufacturing method that can produce complex geometries and optimized shapes with less process steps. In addition to distinct microstructural features, residual stresses and their formation are also inherent to AM components. AM components require several post-processing steps before they are ready for use. To change the traditional manufacturing method to AM, comprehensive characterization is needed to verify the suitability of AM components. On very demanding corrosion atmospheres, the question is does AM lower or eliminate the risk of stress corrosion cracking (SCC) compared to welded 316L components? This work concentrates on post-processing and its influence on the microstructure and surface and subsurface residual stresses. The shot peening (SP) post-processing levelled out the residual stress differences, producing compressive residual stresses of more than −400 MPa in the AM samples and the effect exceeded an over 100 µm layer below the surface. Post-processing caused grain refinement and low-angle boundary formation on the sample surface layer and silicon carbide (SiC) residue adhesion, which should be taken into account when using the components. Immersion tests with four-point-bending in the heated 80 °C magnesium chloride solution for SCC showed no difference between AM and reference samples even after a 674 h immersion.


2015 ◽  
Vol 825-826 ◽  
pp. 369-376 ◽  
Author(s):  
Robert Prussak ◽  
Daniel Stefaniak ◽  
Christian Hühne ◽  
Michael Sinapius

This paper focuses on the reduction of process-related thermal residual stress in fiber metal laminates and its impact on the mechanical properties. Different modifications during fabrication of co-cure bonded steel/carbon epoxy composite hybrid structures were investigated. Specific examinations are conducted on UD-CFRP-Steel specimens, modifying temperature, pressure or using a thermal expansion clamp during manufacturing. The impact of these parameters is then measured on the deflection of asymmetrical specimens or due yield-strength measurements of symmetrical specimens. The tensile strength is recorded to investigate the effect of thermal residual stress on the mechanical properties. Impact tests are performed to determine the influence on resulting damage areas at specific impact energies. The experiments revealed that the investigated modifications during processing of UD-CFRP-Steel specimens can significantly lower the thermal residual stress and thereby improve the tensile strength.


2011 ◽  
Vol 675-677 ◽  
pp. 747-750
Author(s):  
B. Han ◽  
Dong Ying Ju ◽  
Xiao Guang Yu

Water cavitation peening (WCP) with aeration, namely, a new ventilation nozzle with aeration is adopted to improve the process capability of WCP by increasing the impact pressure induced by the bubble collapse on the surface of components. In this study, in order to investigate the process capability of the WCP with aeration a standard N-type almen strips of spring steel SAE 1070 was treated byWCP with various process conditions, and the arc height value and the residual stress in the superficial layers were measured by means of the Almen-scale and X-ray diffraction method, respectively. The optimal fluxes of aeration and the optimal standoff distances were achieved. The maximum of arc height value reach around 150μm. The depth of plastic layer observed from the results of residual stresses is up to 150μm. The results verify the existence of macro-plastic strain in WCP processing. The distributions of residual stress in near-surface under different peening intensity can provide a reference for engineers to decide the optimal process conditions of WCP processing.


2013 ◽  
Vol 473 ◽  
pp. 39-45 ◽  
Author(s):  
Guo Wei Zhao ◽  
Yong Chen ◽  
De Yong Li ◽  
Bin Tang

The aim was to analyze failure mechanism of electromagnetic relay caused by mechanical impact. The principle of electromagnetic relays was studied and the effect of mechanical impact on electromagnetic relays was analyzed in this paper. Based on the established magnetic circuit model, the relationship of the magnetic field strength, the electromagnetic attraction and the impact damage degree was studied. Then, the damage intensity of mechanical impact on magnetic circuit was decided. Afterwards, the structure of electromagnetic relays was improved, and the mechanical impact simulation was studied by ANSYS. The results show that the uncontrollability of electromagnetic relay is mainly caused by air gap, which is aroused by mechanical impact; in addition, the size of air gap is inversely proportional to electromagnetic attraction force. Moreover, the improved structure of relays can increase impact resistance and broaden the scope of engineering application of electromagnetic relay.


2010 ◽  
Vol 168-170 ◽  
pp. 549-552
Author(s):  
Yan Lei Wang ◽  
Qing Duo Hao ◽  
Jin Ping Ou

A new form of fiber reinforced polymer (FRP)-concrete composite beam is proposed in this study. The proposed composite beam consists of a GFRP box beam combined with a thin layer of concrete in the compression zone. The interaction between the GFRP beam and the concrete was obtained by bonding coarse-sand on the top flange of the GFRP beam. One GFRP box beam and one GFRP-concrete composite beam were investigated in four-point bending test. Load-deflection response, mid-span longitudinal strain distributions and interface slip between GFRP beam and the concrete for the proposed composite beam were studied. Following conclusions are drawn from this study: (1) the stiffness and strength of the composite beam has been significantly increased, and the cost-to-stiffness ratio of the composite beam has been drastically reduced comparing with GFRP-only box beam; (2) a good composite action has been achieved between the GFRP beam and the concrete; (3) crushing of concrete in compression defines flexural collapse of the proposed composite beam..


1989 ◽  
Vol 16 (6) ◽  
pp. 902-909 ◽  
Author(s):  
Shahbaz Mavaddat ◽  
M. Saeed Mirza

Three computer programs, written in FORTRAN WATFIV, are developed to analyze straight, monolithically cast, symmetric concrete box beams with one, two, or three cells and side cantilevers over a simple span or over two spans with symmetric mid-span loadings. The analysis, based on Maisel's formulation, is performed in three stages. First, the structure is idealized as a beam and the normal and shear stresses are calculated using the simple bending theory and St-Venant's theory of torsion. The secondary stresses arising from torsional and distortional warping and shear lag are calculated in the second and third stages, respectively. The execution times on an AMDAHL 580 system are 0.02, 0.93, and 0.25 s for the three programs, respectively. The stresses arising in each stage of analysis are then superposed to determine the overall response of the box section to the applied loading. The results are compared with Maisel's hand calculations. Key words: bending, bimoment, box beam, computer analysis, FORTRAN, shear, shear lag, thin-walled section, torsion, torsional and distortional warping.


Sign in / Sign up

Export Citation Format

Share Document