Microstructural evolution and hardness response in the laser beam welded joints of pure titanium during recrystallization and grain growth

2018 ◽  
Vol 145 ◽  
pp. 87-95 ◽  
Author(s):  
H. Liu ◽  
J. Shui ◽  
T. Cai ◽  
Q. Chen ◽  
X.G. Song ◽  
...  
2012 ◽  
Vol 65 ◽  
pp. 1-7 ◽  
Author(s):  
H. Liu ◽  
K. Nakata ◽  
J.X. Zhang ◽  
N. Yamamoto ◽  
J. Liao

Author(s):  
B. B. Rath ◽  
J. E. O'Neal ◽  
R. J. Lederich

Addition of small amounts of erbium has a profound effect on recrystallization and grain growth in titanium. Erbium, because of its negligible solubility in titanium, precipitates in the titanium matrix as a finely dispersed second phase. The presence of this phase, depending on its average size, distribution, and volume fraction in titanium, strongly inhibits the migration of grain boundaries during recrystallization and grain growth, and thus produces ultimate grains of sub-micrometer dimensions. A systematic investigation has been conducted to study the isothermal grain growth in electrolytically pure titanium and titanium-erbium alloys (Er concentration ranging from 0-0.3 at.%) over the temperature range of 450 to 850°C by electron microscopy.


1992 ◽  
Vol 131 (2) ◽  
pp. 569-575 ◽  
Author(s):  
D. Osmola ◽  
P. Nolan ◽  
U. Erb ◽  
G. Palumbo ◽  
K. T. Aust

MRS Advances ◽  
2016 ◽  
Vol 1 (26) ◽  
pp. 1947-1952 ◽  
Author(s):  
Prabhu Balasubramanian ◽  
Chengjian Zheng ◽  
Yixuan Tan ◽  
Genevieve Kane ◽  
Antoinette Maniatty ◽  
...  

ABSTRACTAn integrated experimental – simulation – control theory approach designed to enable adaptive control of microstructural evolution in polycrystalline metals is described. A micro-heater array, containing ten addressable channels, is used to create desired temperature profiles across thin polycrystalline films in situ to a scanning electron microscope (SEM). The goal is that on heating with controlled temperature profiles, the evolution of grain growth within the film can be continuously monitored and compared to Monte Carlo simulations of trajectories towards a desired microstructure. Feed-forward and feedback control strategies are then used to guide the microstructure along the desired trajectory.


Sign in / Sign up

Export Citation Format

Share Document